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Classical and quantum signatures of competingx „2… nonlinearities
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We report the observation of the quantum effects of competingx (2) nonlinearities. We also report classical
signatures of competition, namely, clamping of the second-harmonic power and production of nondegenerate
frequencies in the visible. Theory is presented that describes the observations as resulting from competition
between variousx (2) up-conversion and down-conversion processes. We show that competition imposes hith-
erto unsuspected limits to both power generation and squeezing. The observed signatures are expected to be
significant effects in practical systems.@S1050-2947~97!04406-5#

PACS number~s!: 42.65.Ky, 03.65.Sq, 42.50.Dv, 42.79.Nv
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Second-order, orx (2), nonlinear optical systems are em
ployed successfully in applications ranging from frequen
conversion to quantum optics. The four basicx (2) processes
are second-harmonic and sum frequency generation~SHG
and SFG, up-conversion!; and difference frequency gener
tion and~non!degenerate optical parametric oscillation~DFG
or ~N!DOPO, down-conversion!. In recent years there ha
been increasing interest in the behavior ofinteracting x (2)

nonlinearities.
Interacting nonlinearities can be categorized ascooperat-

ing and competing. Cooperating nonlinearities are thos
where all the down-conversion and up-conversion proce
share the same modes, e.g.,n
2n or n6D1
2n. Compet-
ing nonlinearities are those where all the down-convers
and up-conversion processes do not share the same m
e.g.,n
2n
n6D2, or, n6D1
2n
n6D2. Both forms
of interaction are often referred to ascascadednonlinearities.

An early study of cooperatingx (2) nonlinearities pre-
dicted power limiting of the pump in an optical paramet
oscillator@1#. More recently the large third-order effects po
sible via cooperatingx (2) nonlinearities has been the subje
of extensive research@2,3#, including continuous wave~CW!
studies using cavities@4,5#. Systems of cooperating nonlin
earities hold promise for applications including optic
switching, nonlinear optical amplification@6#, squeezing and
quantum nondemolition~QND! measurements@4#.

In contrast, systems of competing nonlinearities ha
been mainly investigated for their potential as frequency t
able sources of light. Systems considered include: intraca
SFG and NDOPO@7,8#; intracavity DFG and NDOPO@9#;
and intracavity SHG and NDOPO@10–15#. The quantum
properties of the latter system have been modeled for
quadruply resonant configuration@16# and several nonclass
cal features are predicted.

In this paper we report the experimental observation
the quantum effects of competing nonlinearities. We a
report two clear classical signatures of competition: pow
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clamping of the second harmonic and production of non
generate optical frequencies in both the second-harmonic
fundamental fields.

Figure 1 shows the conceptual layout. A frequency do
bler, resonant at and pumped by a frequencyn, produces a
nonresonant field of frequency 2n which is forced to make a
double pass through the cavity. The second harmonic
either downconvert back to the original mode, or act as
pump for the NDOPO. For the latter to occur the signal a
idler modes (ns,i5n6D) must be simultaneously resona
with the moden. With sufficient power in the 2n field the
NDOPO can be above threshold, otherwise the system
below threshold and acts as an amplifier of the vacu
modes.

The three equations of motion for this system are

ȧ152~g11 iD1!a122Am1m2a1*asa i2m1ua1u2a1

1A2g1
cA1 ,

ȧs,i52~gs,i1 iDs,i !as,i2Am1m2a1
2a i ,s* 22m2asa ia i ,s* ,

~1!

wherea1, as, anda i are the fundamental, signal, and idl
field amplitudes, respectively;gx andDx are, respectively,
the decay rate and detuning of modex; g1

c is the decay rate
of the fundamental coupling mirror;m1 andm2 are the re-
spective nonlinear interaction rates for SHG and NDOP

FIG. 1. Conceptual layout of the resonator. Dotted lines rep
sent vacuum inputs, i.e., zero average power.
4511 © 1997 The American Physical Society
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and A15AP1 /(hn), where P1 is the pump power,h is
Planck’s constant, andn is the fundamental frequency.

We define the termgx
eff5(gx1 iDx) as the effective decay

rate of modex. To see why, consider the case of a sing
resonant frequency doubler (m250). Without loss of gener-
ality, we can assume that the pump rateA1 is real. If the
detuningD1 is zero, then the field valuea1 is real. It is clear
that the value ofa1 is limited by the total decay rateg1: if
g1 is large then the absolute value ofa1 will be small. Now
consider nonzero detuning: the value ofa1 becomes com-
plex and is limited by both the decay rateg1 and the detun-
ing D1. If the detuning is very large, then even when t
decay rate is very small the absolute value ofa1 will be
small. Thus the linear phase shiftiD1 introduced by detuning
leads to a reduction of intensity, and can be said to eff
tively increase the decay rate of the cavity.

For zero detunings, the threshold power for competition

P1
thr5h~2n!

ḡ

g1
c

g1
2

Am1m2

1

4 S 11r
ḡ

g1
D 2, ~2!

whereḡ 5 Agsg i andr 5 Am1 /m2. We introduce the scaled
powerN5 P1 /P1

thr . For the likely experimental optimum
gs 5 g i 5 g1, m1 5 m2, we define a minimum threshol
powerP1

min 5 h(2n)g1
2/(hm1), where the cavity escape e

ficiency ish 5 g1
c/g1.

Obviously the threshold can be altered by changing
nonlinearities. Experimentally this is achieved viaphase
matching: i.e., altering the phase match in the nonlinear cr
tal by changing the orientation or temperature@4#. The
threshold can also be altered viadispersion matching. That
is, altering the laser frequency or cavity length so that
signal and idler modes are unable to be resonant with
fundamental. This corresponds to large signal and idler
tunings but zero fundamental detuning. The altered thresh
is then described by substituting absolute values of the ef
tive decay rates,ugx

effu, for all the decay rates in Eq.~2!.
A detailed description of the experimental setup is giv

in @22#. In brief, the system is driven by a miniature diod
pumped Nd:YAG ring laser~Lightwave 122! that produces a
single mode of wavelength 1064 nm. A mode cleaning c
ity acts as a low-pass filter to remove excess quadrature n
~both amplitude and phase! from the laser beam. The outpu
of this drives the nonlinear cavity, which is a 12.5 mm lo
MgO:LiNbO3 monolithic crystal with dielectric mirror coat
ings on the curved end faces (R514.24 mm!. The monolith
is singly resonant at the fundamental; the second harm
executes a double pass through the crystal~residual second
harmonic transmitted through the high reflector end is
ferred to as ‘‘single pass’’!. The laser is locked to the mono
lith, and the mode cleaner is locked to the laser, via sepa
Pound-Drever locking schemes. The second harmonic is
cessed via a low-loss dichroic, the reflected fundamenta
accessed via the Faraday isolator — both beams are se
either a balanced-homodyne pair and/or an optical spect
analyzer.

The obvious signature of competition in this system
production of nondegenerate frequency modes~when
N.1!. When the monolith is repeatedly scanned throu
resonance, these modes cause distorted cavity line sh
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The frequency of the modes is measured by inspecting
infrared field reflected from the monolith with a spectrom
eter. The signal and idler pair are found to be up to 31
from degeneracy (ns,i 5 1033 nm, 1095 nm!. The nondegen-
eracy is limited by phase matching, dispersion, and mir
bandwidth (; 40 nm centered at 1064 nm!. Figure 2 shows,
for scanned operation@17#, the observed threshold powe
~curve a) and the single-pass and double-pass seco
harmonic power~curvesb andc) as a function of the crysta
temperature. Note that the threshold curve has two mini
roughly corresponding to maxima in the double-pass a
single-pass power, respectively. In the latter case, e
though minimal second-harmonic is produced, the intrac
ity second harmonic field is large enough to pump t
NDOPO.

In locked operation the nondegenerate modes are
served via optical spectrum analyzers. Figure 3~a! is the out-
put of the infrared optical spectrum analyzer for the la
only. Figure 3~b! is the output for the locked monolith jus
above threshold: note the strong conversion to signal
idler. The signal and idler mode hop irregularly, the syst
operating stably for up to ten minutes at a time. Gross c
trol is achieved by detuning the fundamental mode. As i
detuned around resonance, the effective decay rate of
fundamental does not change greatly, but, due to disper

FIG. 2. ~a! observed threshold power;~b! single-pass SH powe
~i.e., residual transmitted through high reflector!, and ~c! double-
pass SH power~as shown in Fig. 1!; as a function of crystal tem-
perature~i.e., phase mismatch!.

FIG. 3. Optical spectrum analyzer outputs of the locked mo
lith. All traces are intensity vs frequency~arbitrary units!. The small
peak in the middle of the infrared traces is due to imperfect ali
ment. infrared traces~a! from laser forP1532 mW, FSR5 free
spectral range of the analyzer;~b! from monolith forP1514 mW,
note signal and idler modes;~c! from monolith for P1549 mW,
note extra pair of modes;visible trace ~d! from monolith for
P15155 mW , the ordinate is logarithmic to highlight the four ext
frequencies.
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55 4513CLASSICAL AND QUANTUM SIGNATURES OF . . .
mismatch, the effective decay rates of the signal and id
can become very large. This shifts the threshold power ab
the operating power and suppresses the NDOPO cf. Eq.~2!.
Finer control has been achieved using a cavity with tuna
dispersion, for example, a semimonolithic design wher
translatable cavity mirror is external to the MgO:LiNbO3
crystal @19#. Such improvements allow for stable operati
with long intervals between mode hops.

Surprisingly, as the power is increased further two ex
modes in the infrared, and four extra modes in the visib
are seen@Figs. 3~c! and 3~d!#. To the authors’ knowledge thi
is the first observation of extra modes around the sec
harmonic, and it strongly supports the mechanism propo
in @15# of cascaded second-harmonic, sum, and differe
frequency generation between the signal, idler, and pu
fields. The extra modes in the visible light are likely gen
ated by SFG (n1ns,i52n6D) or SHG (2ns,i52n62D),
while the extra pair in the infrared are from DFG with th
visible modes (n1ns,i2n i ,s52ns,i2n5n62D). Further
modes appear in the infrared field with increasing power:
system holds great promise both as a source of freque
tunable light and for frequency measurement~e.g., as a pre-
cise frequency chain!.

Another surprising signature of competition is clampi
of the second-harmonic power. From Eq.~1! we find that for
P1.P1

thr , the second-harmonic power is

P25h~2n!
ḡ2

m2
, ~3!

i.e., the power is clamped to its threshold value. Abo
threshold, ‘‘excess’’ pump power is reflected or converted
signal and idler. Similar behavior has been predicted for
optical limiter @1#: a standing wave DOPO resonant atn,
which is single pass pumped at 2n. The 2n field in both
cases sees three input-output ports, however the clampi
due to different mechanisms: competingx (2) nonlinearities
in our system; cooperatingx (2) nonlinearities in the limiter.

The conversion efficiency at threshold is given bye
5 P2 /P1

thr . The minimum threshold, P1
min , is the point of

maximum conversion efficiency, with a value equal to t
cavity escape efficiencye 5 g1

c/g1 5 h. For unity cavity es-
cape efficiency,h51, P1

min is also the impedance matchin
point of the cavity.

Figure 4 shows experimental curves of second-harmo
versus fundamental power for two different detunings.
curve (a) the second-harmonic power is clamped at 23 m
at a threshold power of 41 mW. This threshold is mu
higher than the observed minimum threshold,P1

min514.3
mW, as the signal and idler modes see high cavity losses
to dispersive mismatch. In curve (b) the monolith is tuned
towards resonance so that the effective fundamental de
rate is lower than in curve (a), however the detuning in
creases the dispersive mismatch, and thusgs,i , suppressing
the NDOPO and moving the threshold to 54 mW.

This has important consequences when designing non
ear optical systems. Clamping is undesirable in many ap
cations, such as frequency doubling to form a high pow
light source. With the development of low dispersion, e
cient nonlinear cavities, clamping is expected to becom
r
ve
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widely observed phenomenon. In the past year alone it
been observed in systems with competing SHG and NDO
@18–20# and in an optical limiter formed by an OPO intra
cavity with a laser@21#. It can be suppressed via tunab
dispersion, or avoided entirely by designing the system
that the minimum threshold point occurs at a power hig
than maximum pump power. Ideally clamping should n
occur in many frequency doublers as they are optimized
maximum conversion efficiency, i.e., pumped atP 1

min . How-
ever in practice, many doublers are optimized by pump
them at powers aboveP 1

min . This is done because for powe
less thanP 1

min the conversion efficiency falls off very
steeply: small variations in fundamental power lead to la
variations in harmonic power. However, aboveP 1

min the con-
version efficiency falls off very slowly: the harmonic powe
is much more robust to small variations in the fundamen
power. It is exactly this regime which is prone to compe
tion.

Naturally, competition also has quantum signatures. It
been suggested that, as the vacuum modes atns,i are corre-
lated by the NDOPO forN,1, then competition could be
observed as squeezing of the reflected pump field at de
tion frequencies around the difference frequency of the s
nal and idler,D @20#. In our experiment the free spectra
range of the monolith,~which sets the minimum value o
D), is much larger than the maximum bandwidth of the d
tectors~5.4 GHz and 100 MHz, respectively!, ruling out any
observation of this signature.

For the case where the second harmonic is resonant
predicted quantum signature of competition is near per
squeezing on either the fundamental or the second-harm
mode in power regimes that are inaccessible in the abse
of competition@16#. However, in our system the second ha
monic is not resonant, and the quantum signature of com
tition is very different: above threshold the squeezing d
grades. Without competition the second-harmonic squee
spectrum is given by@22#

V2512
8gnl

228gnlg1
c~V1

in21!

~3gnl
21g1!

21v2 , ~4!

where the nonlinear loss rate,gnl 5 m1ua1u2; v 5 2p f ,
where f is the detection frequency, andV1

in is the amplitude

FIG. 4. Second-harmonic power vs fundamental power cur
for two different detunings,~a! and~b!. The systematic error bar is
shown. All power measurements are NIST traceable with an ab
lute error of 7%.
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4514 55A. G. WHITE et al.
quadrature spectrum of the pump field. Forgnl..g1 and
V1
in 5 1 the maximum squeezing ofV51/9 ~29.5 dB! is at-

tained at zero frequency@23#. With competing nonlinearities
the spectrum becomes

V2511
2~N21!B~v!22NA~v!

~N21!2B~v!1v2S g f

2ḡ
D 21C~N!NA~v!

r
1S v2

2ḡ
D 2 ,
~5!

where N.1; g f5g11r ḡ; A(v) 5 r 2v2; B(v)5g f
21v2;

C(N)5g1 /ḡ1r (N11)12(N21); andV1
in51, g1

c5g1, for
clarity. If we assume the minimum threshold for competiti
P 1

min thengs5g i5g1 andm15m2 and Eq.~5! simplifies to

V2511
2~N212v̂2!

4N2v̂21~N212v̂2!2
, ~6!

wherev̂5v/(2g1). A detailed theoretical discussion of th
squeezing behavior under these simplified conditions
given in @24#. Maximum squeezing occurs at the point whe
competition begins. For the minimum thresholdP1

min the
maximum squeezing is at zero frequency with a va
V51/2 ~23 dB!. For higher thresholdsP1

thr.P1
min the maxi-

mum squeezing is still at zero frequency, but with larg
values. In all cases Eq.~6! connects to Eq.~4! without dis-
continuity.

As Fig. 5 shows, forN.1 two effects come into play
both of which degrade the squeezing. IncreasingN pulls the
second-harmonic noise, at all frequencies, towards the n
of the second-harmonic input field. As this is a vacuum fie
the noise is pulled towards shot noise, regardless of whe
it was originally above~super-Poissonian! or below ~sub-
Poissonian! shot noise. Thus increasingN causes broadban
degradation of the squeezing. This behavior is exactly an
gous to that of an electro-optic noise eater, where increa
the beamsplitter reflectivity pulls the noise towards the lim
set by the vacuum entering the empty beamsplitter port@25#.
This noise eating behavior is expected to occur in other n
linear optical systems: the optical limiter@26# and the satu-
rated laser amplifier@27#.

The additional squeezing degradation evident at low
quencies is due to a more subtle effect. In a conventio
OPO, the signal and idler amplitude quadratures are v
noisy above threshold~for a DOPO the amplitude is sho

FIG. 5. Theoretical squeezing spectra for the caseP1
thr 5 P1

min .
~a! N51.001,~b! N51.25, and~c! N53.
is

e
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ise
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noise limited at P54Pthr and 50% squeezed only fo
P.25Pthr @28#!. This noise is transmitted to the amplitude
the second harmonic, degrading the squeezing. This l
frequency degradation decreases with increasingN ~compare
curvesb andc in Fig. 5!.

Figure 6~a! shows the experimentally observed squeez
in the absence of competition, which is suppressed via
tuning as discussed earlier. Below 6 MHz the squeezing
grades due to laser pump noise@22#, above 6 MHz the
squeezing is as expected from theory withV1

in51. The
spikes at 17 and 27 MHz are from the locking signals. W
competition, and at a lower pump power, the spectr
changes to that shown in Fig. 6~b!. As predicted, there is
considerable excess noise at low frequencies, while the d
radation at higher frequencies is more gradual. The exc
noise at low frequencies is greater than that shown in Fig
due to the presence of numerous, overlapping, noise sp
The spikes are due to a locking instability in the mo
cleaner which is driven by competing locking signals. It
clear that even a small amount ofx (2) competition leads to a
marked degradation in the squeezing. This previously un
pected limit to squeezing can only be avoided by design
the system so that competition is suppressed when the p
power is greater than the maximum conversion efficien
power. One solution is a cavity with such high dispersi
that the signal and idler modes are unable to become sim
taneously resonant with the fundamental: high seco
harmonic squeezing has been seen in such a system@29#.

In conclusion, competition between SHG and NDOPO
a monolithic cavity has been observed to cause generatio
new frequencies in both the visible and infrared field
clamping of the second-harmonic power, and degradatio
the second-harmonic squeezing. Competition imposes a
viously unsuspected limit to squeezing and power gene
tion. The reported signatures are expected to be comm
observed in efficient, low dispersion systems, unless exp
steps are taken to avoid competition.
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polished by CSIRO, Sydney, Australia. The coatings we
provided by LZH, Hannover, Germany. This work was su
ported by the Australian Research Council. M.M. was su
ported by the APART program of the Austrian Academy
Sciences.

FIG. 6. ~a! Squeezing spectra.~a! Without competition,
P1574 mW and~b! with competition,P1560 mW.
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