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Observation of Power-Law Scaling for Phase Transitions in Linear Trapped Ion Crystals
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We report an experimental confirmation of the power-law relationship between the critical anisotropy
parameter and ion number for the linear-to-zigzag phase transition in an ionic crystal. Our experiment
uses laser cooled calcium ions confined in a linear radio-frequency trap. Measurements for up to ten
ions are in good agreement with theoretical and numeric predictions. Implications on an upper limit to
the size of data registers in ion trap quantum computers are discussed.

PACS numbers: 32.80.Pj, 03.67.Lx, 52.25.Wz, 64.60.– i
Ions confined in linear radio-frequency traps, and cooled
by laser radiation, will condense into a crystalline state.
Such crystals are the most rarefied form of condensed mat-
ter known [1]. Besides being of inherent scientific interest
for this reason, cold trapped ions have a growing number of
applications, notably spectroscopy [2–4], frequency stan-
dards [3,5], and quantum computing [6,7]. The existence
of different kinds of phase transitions of these crystals has
been known for some time [8,9] and has been the subject
of various theoretical and numeric studies [1,10,11].
Previous experimental work identified different crystal
phases/configurations in a quadrupole ring trap [9]. Here
we explicitly investigate the transition between two of
these phases: the linear and the zigzag configurations. We
report the first experimental confirmation of one of the key
theoretical/numeric predictions for the linear-to-zigzag
transition, namely, the existence of a power law relating
the critical anisotropy parameter to the number of ions
in the crystal. Further, we discuss the usefulness of this
power-law expression in determining the ultimate size of
a quantum logic register realizable using a single ion trap.

The potential energy of a crystal of N identical ions
of mass M and charge e confined in an effective three-
dimensional harmonic potential is
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where rn � �xn, yn, zn� is the position vector of the nth
ion, and nx , ny , and nz are the trapping potential frequen-
cies in the three directions. Assume the trapping potentials
are approximately equal in the two transverse directions (x
and y), so that nx � ny � nr , and the trapping potential in
the axial (z) direction is different than in the other two di-
rections. This anisotropy is characterized by the parame-
ter a � �nz�nr �2. Work by Schiffer [1] and Dubin [11]
predicts that the ions undergo a phase transition from a
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linear to a zigzag configuration at a critical anisotropy
value acrit. The predicted power-law scaling for acrit ver-
sus the number of trapped ions N is

acrit � cNb , (2)

where the constants found empirically by Schiffer are c �
2.53 and b � 21.73 [12]. Later in this paper we provide
a simple alternative approach which produces qualitative
agreement with Schiffer’s results but is based on a stabil-
ity analysis of the transverse oscillatory modes, rather than
on numerical simulations of the equilibrium crystalline
configurations.

We studied the zigzag phase transition using strings of
40Ca1 ions confined in a linear radio-frequency quadrupole
trap. Trap electrodes (see Fig. 1 or Ref. [13]) consist
of four rods and two conical end caps. An rf drive at
V�2p � 6 MHz is applied to two diagonally opposite
rods to produce a radial confining pseudopotential [14]
with frequency nr proportional to the rf trapping voltage
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FIG. 1. Trap electrodes include four 1-mm diameter rods and
two end caps. Radio-frequency trapping voltages V0 range from
60–200 V, producing radial frequencies nr � 200 700 kHz.
End cap voltages range from 10–200 V, producing axial fre-
quencies nz � 80 390 kHz. Outer support rods (not shown)
double as compensation electrodes for moving ions radially
within the trap. The inset shows a level diagram for 40Ca1.
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V0 (for example, [15]). Axial confinement is provided by
a static potential applied to the two end cap electrodes,
resulting in a harmonic potential with frequency nz pro-
portional to the square root of the end cap voltage. An-
harmonic contributions to the axial potential energy are
estimated to be less than 3 3 1027 the harmonic contribu-
tion, and are thus ignored.

Calcium ions are introduced into the trap by intersecting
an atomic beam with an electron beam. Laser cooling on
the S1�2 to P1�2 transition at 397 nm (see Fig. 1) cools the
ions so that a crystallized string is formed along the trap
axis. The resulting 397 nm ion fluorescence is detected
in the horizontal plane along a direction perpendicular to
the trap axis by both a CCD camera and a photomultiplier
tube. An 866 nm laser returns ions falling into the D3�2
metastable state to the cooling cycle. The 397 nm light
is produced by doubling 794 nm diode-laser light which
is intensified by a tapered amplifier; the 866 nm beam is
also produced by a diode laser.

For each measurement of acrit, the rf trapping potential
is lowered, keeping the end cap voltage constant, until the
transition to a zigzag pattern is observed. The rf poten-
tial is then repeatedly raised and lowered to determine the
reproducibility of the transition point and to rule out hys-
teresis. At the identified critical rf voltage, we measure the
radial and axial resonant frequencies. The measurements
are repeated for a range of end cap voltages and then for
different numbers of ions N .

To determine the rf trapping voltage at which the linear
crystal becomes zigzag, the voltage is lowered until the
equilibrium position of at least one of the ions moves vis-
ibly (0.5–1.5 pixels � 0.3 1.0 mm) on the CCD camera
image. Axial shifts are detected more easily than radial
shifts; therefore, movement in the axial direction is used as
the diagnostic to identify the phase transition. Moreover,
observations show the spacing between the two innermost
ions to be most sensitive to this axial reorganization. The
critical rf voltage is determined to within 60.1 V out of
3–8 V on the synthesizer generating the rf trapping volt-
age. This 0.1 V resolution, corresponding to 8–16 kHz
uncertainty in radial frequency, is limited by the voltage
change necessary to move an ion visibly on the CCD cam-
era rather than by the synthesizer itself.

The radial and axial frequencies are individually mea-
sured by applying an external drive and observing melting
of the crystal into a diffuse but still stable cloud when the
drive frequency is resonant. Note that although the ions are
driven at a center-of-mass frequency, coupling to higher
order modes heats the string until it melts. The external
drive is the output of a function generator, attenuated and
capacitively coupled through 1000 pF to one end cap elec-
trode. Resonant frequencies are measured reproducibly to
within 61–2 kHz by stepping repeatedly back and forth
through the typical 1–4 kHz range in which melting is ob-
served. Since the azimuthal symmetry of the trap is not
perfect, we measure two separate radial frequencies, dif-
fering from each other by 1%–2%. The data presented
include only the smaller radial frequency (corresponding
to the weaker axis of the radial well) which is responsible
for the zigzag instability onset.

Figure 2 shows the radial versus axial frequencies at
which the linear-to-zigzag phase transition was observed
for string lengths up to N � 10. Figure 3 shows the aver-
age acrit as a function of N , and demonstrates the predicted
scaling behavior for these critical parameters. In both fig-
ures, the solid lines are results from our theoretical analysis
(presented below) with no free parameters. Although the
measurements of acrit lie slightly above theory, the overall
agreement within the 5%–6% error bars is quite remark-
able for a second order phase transition.

In Fig. 2, vertical error bars are dominated by the
8–16 kHz resolution in determining the onset of the
zigzag mode as described above, but also include (in
quadrature) the 1–2 kHz measurement resolution of
the radial frequency. Horizontal errors representing the
axial frequency measurement resolution are smaller than
the point size and not shown, but are included when
calculating the error for a measured acrit. In Fig. 3, each
plotted value is a weighted average of measured acrit’s.
Corresponding error bars are taken to be weighted average
errors rather than quadrature sums of the individual acrit
errors, because they represent detection resolution rather
than statistical errors and performing many measurements
would not be expected to reduce their size.

An unaccounted source of error arises from the thresh-
old axial shift of 0.5–1.5 pixels required to detect a phase
transition. Any smaller axial shifts due to the onset of
the zigzag mode at higher rf voltages go undetected. In-
vestigations tracking the axial position of an ion near the
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FIG. 2. Measured radial versus axial frequencies (points), at
the onset of the zigzag instability, agree well with the prediction
of our theoretical analysis (lines). Measurements were taken on
seven different days, with some days dedicated to a particular
length ion string and other days spent studying up to six different
length strings. Theory lines pass through the origin and have
slopes nr�nz � �acrit�21�2, increasing with ion number for N �
3 (minimum slope shown) through N � 10 (maximum slope
shown). Error bars (see text) are dominated by the uncertainty
in determining the critical rf voltage for zigzag onset while the
axial frequency is held fixed.
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FIG. 3. Measured values (points) of the critical anisotropy pa-
rameter acrit versus ion number N agree well with a fit to the
predictions of our theoretical analysis (line). Each point is a
weighted average of measured values from Fig. 2, as is each
error bar.

center of a linear crystal as a function of rf trapping volt-
age were performed to estimate the size of this detection
threshold error. Examples such as those shown in Fig. 4
reveal that once a phase transition is detected, the axial
equilibrium moves roughly linearly with rf voltage at a rate
of 0.3–1.1 pixels per 0.1 V step of the drive synthesizer.
Not surprisingly, the weaker trap settings—low end cap
voltage and small ion number—produce the larger amount
of movement per voltage step but also require the larger
threshold shift. Underestimates in the critical trapping
voltage due to this effect, therefore, end up of the same
order as the 0.1 V resolution error already assigned. This
detection threshold error accounts in part for the slightly
high trend exhibited by the measured acrit’s. Alternatively,
ignoring the detection threshold error, our measurement
can instead be interpreted as an upper bound on acrit.

Trapping and cooling parameters were varied outside
their normal ranges to rule out systematic effects. De-
tuning the 397 nm laser as far as possible to longer or
shorter wavelengths, while still maintaining crystallization,
altered neither the measured resonant frequencies nor the
measured critical rf voltage. Similar tests involving the
866 nm laser wavelength showed no effects. Finally, for
each new end cap voltage, care was taken to move the ion
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FIG. 4. Axial position as a function of rf voltage for an ion
nearest to, but not at the center of, a four ion string (circles)
and a seven ion string (triangles). Dashed lines show the steady
state axial position for high rf voltages. Solid lines are fits to
the points whose rf voltages lie at or below the critical value.
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string to the radial center of the rf quadrupole potential.
Ions not centered in this potential experience micromotion
at the 6 MHz trap frequency. This driven motion, detected
as a modulation on the ion fluorescence intensity, was used
as a diagnostic to find the optimal position along one ra-
dial direction [15]. The diagnostic of micromotion for the
orthogonal radial direction was the observation of a ra-
dial shift in ion position upon weakening or strengthening
the pseudopotential well, because an ion’s position in the
pseudopotential will depend on the potential well strength
unless the ion is centered [15]. Ions were moved radi-
ally by applying voltages to the compensation electrodes,
which were typically tuned to 61 V; tests detuning them
by 5–10 V revealed no change in measured resonant fre-
quencies or in critical rf voltages.

We now present a simple theoretical analysis of the on-
set of zigzag instability. The equilibrium positions of the
ions are determined by the condition that the potential be a
minimum, i.e., =nU � 0 (n � 1, . . . , N). For the case of
strong anisotropy (a ø 1), the ions are configured along
a line in the z direction. The solutions to the equilibrium
equations in this case have been investigated by various
authors (see, for example, [16–18]); we denote the equi-
librium position of the nth ion by r̄n � �0, 0, z̄n�.

Small oscillations of the ions about their equilibrium
positions are described by the Lagrangian [17,19]
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where �jn, hn, zn� are the displacements of the nth ion
from its equilibrium position in the �x, y, z� directions, re-
spectively. The coupling matrices An,m and Bn,m are given
by the formulas (following Ref. [17])
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where � � �e2�4pe0M�2pnz�2�1�3 is a length scale and
dn,m is the Kronecker delta.

The eigenvectors and eigenvalues of the real, symmet-
ric, positive-definite matrix An,m define the normal modes
of oscillation of the ions along the z direction. Because
of their importance to quantum computing, they have been
studied in some detail [17,19]. The eigenvectors are de-
fined by the formula

PN
m�1 An,mb� p�

m � mpb�p�
n , where
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mp . 0 is the eigenvalue, b� p�
n the normalized eigenvec-

tor, and p �� 1, . . . , N� the mode index (the modes being
enumerated in order of increasing eigenvalue).

From the definition of the coupling matrix for the radial
oscillations, Bn,m, we see that it has identical eigenvectors
to An,m, but has different eigenvalues:
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For these oscillations, the eigenvalues are no longer al-
ways positive. Indeed, as a is increased, a critical value
occurs for which one of the eigenvalues of the radial os-
cillations becomes zero. Beyond this point the radial os-
cillation is unstable and so is the linear configuration: this
marks the onset of the zigzag mode. The critical value
of a for which this occurs is given by the exact result
acrit�N� � 2��mN 2 1�, where mN is the largest eigen-
value of the matrix An,m for a given number of ions N .
The value of mN in general must be determined by numeri-
cally diagonalizing the matrix An,m for each value of N , but
the expression for acrit�N� is exact.

We can approximate acrit�N� as the power law in Eq. (2)
in order to compare it to our experimental measurements.
Table I compares the constants c and b [see Eq. (2)] de-
rived from the measurements, from a fit to our theory (over
N � 3 10), and from Schiffer’s fit. We emphasize that
no matter how well any model calculates acrit for a spe-
cific N , the power law deduced for acrit versus N is still
approximate and must be obtained from a fit of many cal-
culated acrit’s. In light of this, the three sets of coeffi-
cients are close, particularly for b. Small discrepancies
may be explained by the fact that the exact expression for
acrit�N� is not a power law, and that Schiffer’s predicted
values were deduced from a fit of 10 acrit values over the
range N � 2 500, whereas we fit over just the experimen-
tal range N � 3 10. Fitting, instead, over all values in the
range N � 2 100 yields the constants c � 2.88 6 0.03
and b � 21.773 6 0.003, which are more appropriate (as
are Schiffer’s) for large N applications of the power law
discussed below.

Using the power-law expression, we illustrate how to
estimate the maximum number of ions it is reasonable to
confine along the trap axis. This gives one possible upper
limit to the size of data registers for quantum computation
with on-axis ions in a linear trap. Rewriting Eq. (2) gives
an upper limit Ncrit to the number of ions one can trap in
the linear configuration: Ncrit � �nz�

p
c nr �2�b . Experi-

mental limitations will dictate how large the ratio nz�nr

can be made, but this expression should prove useful in
optimizing future designs of ion traps.
TABLE I. Scaling constants c and b from fits of the experi-
mental and theoretical data shown in Fig. 3 and from Schiffer’s
numerical results. Standard errors from our linear regressions
are included. (The error in Schiffer’s linear regression was not
reported.) An additional 25% experimental uncertainty in acrit
is included to account for the detection threshold error discussed
earlier; it dominates the 20.2 uncertainty in c and the 60.04
uncertainty in b.

Experiment Our theory Schiffer’s results

c 3.2310.06
20.2 2.94 6 0.07 2.53

b 21.83 6 0.04 21.80 6 0.01 21.73

In summary, a simple theoretical analysis has produced
the critical anisotropy parameter acrit for the linear-to-
zigzag phase transition. Experimental measurements have
provided a confirmation of the predicted power-law scal-
ing for acrit versus N which had until now been untested.
From this scaling we obtain an expression for an upper
limit to the size of linear data registers for quantum com-
putation in these traps.
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