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Maximizing the entanglement of two mixed qubits
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Two-qubit states occupy a large and relatively unexplored Hilbert space. Such states can be succinctly
characterized by their degree of entanglement and purity. In this article we investigate entangled mixed states
and present a class of states that have the maximum amount of entanglement for a given linear entropy.
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With the recent rapid developments in quantum informa-states(MEMS) and show it to be optimal for the entangle-
tion there has been a renewed interest in multiparticle quarment and purity measures considered.
tum mechanics and entanglement. The properties of states Currently a variety of measures are known for quantifying
between the pure, maximally-entangled, and completelyhe degree of entanglement in a bipartite system. These in-
mixed (separablelimits are not completely known and have clude the entanglement of distillatidi8], the relative en-
not been fully characterized. The physically allowed degredropy of entanglemeri2], but the canonical measure of en-
of entanglement and mixture is a timely issue, given thatanglement is called thentanglement of formatiofi8] and
entangled qubits are a critical resource in many quantumfor an arbitrary two-qubit system is given hg1]
information applications(such as quantum computation
[1,2], quantum communicatiof3], quantum cryptography E-(p)=h 1+ Vl_T)
[4,5] and teleportatiof6,7]), and that entangled mixed states FLP 2 '
could be advantageous for certain quantum information situ- _
ations[8]. Whereh(x)_= —xlogy(X) —(1—x)logy,(1—X) is Shannon’s en-
The simplest nontrivial multiparticle system that can betropy function andr, the (“concurrence” squared-tangle”
investigated both theoretically and experimentally consists of21] is given by
two qubits. A two-qubit system displays many of the para- a0
doxical features of quantum mechanics such as superposition r=CP=[maxh =A== N4 0" 2
and entanglement. Extreme cases are well known and clegfo e the)'s are the square roots of the eigenvalues, in de-
enough: maximally entangled two particle states have been ) A% A A Bal A g
produced in a range of physical systef8s-12], while two- ~ Ccreasing order, of the matrixpp=poy®oyp*oy @0y,
qubits have been encoded in prodebnentangledstates wherep* denotes the complex conjugation @in the com-
[13] via liquid nuclear magnetic resonanf®4]. Recently, putational basig|00),|01),|10),/11)}, and is an antiunitary
however White etal. have experimentally generated operation. Since the entanglement of formatiBp is a
polarization-entangled photons in both nonmaximally en-strictly monotonic function ofr, the maximum ofr corre-
tangled stategl5], and general states with variable degree ofsponds to the maximum &g . Thus in this paper we use the
mixture and entanglemeft6]. tangle directly as our measure of entanglement. For a
In this Rapid Communication, we explore theoretically maximally-entangled pure state=1, while for an unen-
the domain between pure, highly entangled states, and hightangled stater=0.
mixed, weakly entangled states. We will partially character- There exist for the degree of mixture of a state a number
ize [17] such two-qubit states by thepurity and degree of  of measures. These include the von Neumann entropy of a
entanglemenl[18]. Specifically, we address the question: state, given by S —Tr[p In p] [22], and the purity Trp2]. In
is, states with the maximum amount of entanglement for a
given degree of purity? Ishizaket al. [19] have proposed S =41-Tip2}, 3
two-qubit mixed states in which the degree of entanglement
cannot be increased further by any unitary operatidthe  which ranges from @for a pure stateto 1 (for a maximally-
Werner statd¢20] is one such exampleA numerical explo- mixed statg The linear entropy is generally a simpler quan-
ration of the entanglement—purity plane is used to establistity to calculate and hence its choice here.
an upper bound for the maximum amount of entanglement Let us now examine our two-qubit states and the region
possible for a given purity, and vice versa. We derive arthey occupy in the tangle—linear-entropy plane. We begin by
analytical form for this class afnaximally entangled mixed randomly generating two million density matrics represent-
ing physical states, and determining their linear entropy and
tangle. In Fig. 1a) we display a subset of these results for
*Email address: bill_munro@hp.com 30000 points. We see that quite a large region of this plane is
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populated region. As can be seen in Figb)l a definite
boundary to the physically possible states exists.

Let us now analytically determine the form of these
MEMS. As our starting point, let us consider the Werner
state given by Eq(4). How can one increase its degree of
entanglement without changing its purity, or, alternatively,
how can one increase its linear entropy given a certain de-
gree of entanglement? It was shown by Lewenstein and San-
pera[ 26] that any two-qubit entangled state can be written as
a mixture of a separable state and a single pure entangled
state. The Werner statd) is recognizably of this form. All
its entanglement arises from thg® (P .| term, and
hence, to leave the degree of entanglement fixed while in-

_ ) creasing the linear entropy this term needs to remain un-
| i 1 touched. Local unitary operations will not affect the degree
| of entanglement or linear entropy. In deriving our ansatz, we
will note the following points:

(i) The I,®I, term of the Werner states represents the

0.8 |

0.7

0.6

& 0 NG ] maximally mixed state. It can be written as an equal inco-
“f N7 1 herent mixture of the four Bell staté® . )=1/y2[|0)|1)
.l N 1 +|1)|0)] and |® . )=1/y/2[|0)|0)*+|1)|1)]. If in our pro-

02}

posed ansatz we increase the amount of any ofthe) or
| _) Bell states, then the net entanglement in the total sys-
0 01 02 03 04 05 06 07 08 03 1 tem genera”y decreases.

Si (i) In a general two-qubit density matrix there are two
types of off-diagonal terms, those that represent the entangle-

generated two-qubit random matrices. Two sets of data are plotte mhent an_d tlhose :.h?t represent_t_smgtle-partlcle SUPeT?S'tlon'
(a) 30000 randomly generated matrices, which show the extent ob else Si'nlg e-particie s_uperposudlon erg's;in . _e Sset to zero
physical states in the entanglement-purity plaf®; 30000 ran- oY 'ocal linear operations, and so, by definition, cannot

domly generated matrices weighted to explore the boundary regiofzN@nge the net entanglement or linear entropy. .

Also shown are analytical curves f6 the Werner state, a mixture (iii) The diagonal elements of 'the two-qubit de”§'ty ma-
of the maximally entangled state and the maximally mixed statelrix do not affect the system’s maximum entanglenignten
and(ii) the maximally entangled mixed states, states with the maxi@ specified amount of®, )(® . |). The diagonal elements,
mal amount of entanglement for a given degree of linear entfopy however, have a significant impact on the linear entropy.

FIG. 1. Plot of the tangle and linear entropys, of numerically

vice versa. See text for further details. These principles lead us to postulate an ansatz of the form
filed with physically acceptable statéebviously a maxi- il 0o Y

mally mixed, maximally entangled state is not possihky- 2 2

czkowskiet al. [24] have performed similar numerical stud- 0 a o 0

ies, but their work focused on how many entangled states are p= (5)

in the set of all quantum states. In Figlalwe have also 0 0 b 0

explicitly plotted the tangle versus linear entropy for the % %

Werner state, a mixture of the maximally entangled state and 2 0 0 y+ 2

the maximally mixed statg20]:

This comprises a mixture of the maximally-entangled Bell
~ 1-y state|® ) and a mixed diagonal statevhose populations
p=—7 12®loF VP NP, (4)  are specified by the real and non-negative parameters
a,b,x,y). Without loss of generality we choosg to be a
positive real number, which ensures that the ansatz density
matrix is positive semidefinite. From normalization,

where |, is the identity matrix and/®,)=1/,/2[|0)|0)
+]1)|1)]. We have labeled our orthogonal qubit states by
|0) and|1). This Werner state is entanglétseparablgfor X+y+a+b+y=1, (6)
v>1/3 [25] and maximally-entangled whep=1. The re-

sults from Fig. 1a) clearly indicate a class of states that havethe linear entropy is simply given by

a larger degree of entanglement for a given linear entropy

than the Werner states. We also generated a second set of

data (by random perturbations about the maximally en- SL:§{1_a2_b2_X2_y2_7(X+y)_72}’ (@)
tangled mixed stat¢so as to examine the boundary of pos-

sible states, which in the previous data set was a sparselyith the concurrence given by
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C=max y—2+/ab,0]. (8)  The degree of entanglement for this maximally entangled

mixed state is simply-= 72, while the linear entropy has the

To determine the form of the two-qubit maximally- form

entangled mixed states, we begin by specifying that the con- _2 B 2
currenceC must be greater than zero. Thus=maxy S=3049(»2=39(7))= 7). (14)

—2\/%,9]= =2 \/a_b?o and therefore is maximized when | Fig. (1) we have plotted the tangle versus the linear

C=. This requires eithen=0 and/orb=0 (without loss of  entropy for the Werner state, and the numerically determined

generality we seb=0). Using the normalization constraint maximally entangled mixed state. Our analytic expression

given by Eq.(6), the linear entropy is given by for the state(12) perfectly overlays the numerically gener-
, ) , ated optimal curve. It is clear that these states have a signifi-
S =3{2a+(y+2x)(l-a—y)—2x*—2a%.  (9) cantly greater degree of entanglement for a given linear en-

tropy than the corresponding Werner states. The maximally-
Calculating the turning point of Eq(9), we find that entangled mixed state and Werner state curves join each
dS, 19x=0 when eitherx=0 (a minimum or 2x=1—a  other at two points in the tangle—linear-entropy plane. The
— v (a maximum anddS, /da=0 when eithee=0 (amini-  first and most obvious point occurs at,§ )=(1,0) (here
mum) or 4a=2—2x— vy (a maximun). First examining the both states are maximally entangled@he second point oc-
dS l9x stationary solution and the maximum given by 2 curs at ¢,S ) =(0,8/9). Here the two states are given by,
=1-a— vy, we observe that this condition requires y. If

a=1- v then the stationary point corresponds to a turning 173 0 0 1/
point. We now need to examine several parameter regimes to 0O 16 0 O
determine the optimal solution. The first region has concur- PWerner ,
rence values in the region 2:=y=<1. In this region the 0 0 16 0
optimal situation occurs whex=0 and a=1-—1vy. This /6 0 0 U
means the maximally entangled mixed state has the form
/3 0 0 O
y/2 0 0 ’y/2 ~ 0 1/3 0
. 0 1-y 0 O 10 PMEMST| o 9 0 o0 (19
PMEMS 0 0 0 0 0 0 0 1
vI2 0 0 vyl2

Neither state is entangled. We observe tﬁg&MS at this
The second regime occurs fo@= y=<2/3. In this case the point has no nonzero off-diagonal elements, but the Werner
optimal solution occurs whea=1/3 andx+ y/2=1/3. The state does. The maximally entangled mixed state is entangled
optimal maximally entangled mixed state in this region hasas soon as the off-diagonal elements are nonzera(,

the form while the Werner state requireg>1/3 to be entangled
Thoughpwemerandpyems have different forms they have the
173 0 0 vy/l2 same degree of entangleménerg and linear entropy. Be-
0 13 0 0 cause of the way the maximally entangled mixed state has
PMEMS= (11 been constructed, it never attains a linear enti§py 1. The
0 0 0 O Werner state attains this point because of its maximally
yI2 0 0 1/3 mixed component.

To confirm that our analytic solution is optimal and that
In this case the diagonal elements do not vary wittCom- N0 density matrix has a greater degree of entanglement for a
bining both these solutions, we can obtéip to local uni-  9iven linear entropy than the stat2), we generated one
tary transformationsthe following single explicit form for ~ Million further random density matrices. We found that the

the maximal entangled mixed state: maximally entangled mixed state is indeed optimal. It is in-
teresting to note, however, that the state is only optimal for
a(y) 0 0 vl/2 mixture measures based or{ g]; if instead the degree of

mixture is measured for instance by the entrd@g], the
pa— 0 1-29(y) 0 (12  state is not optimal.
0 0 o 0] Last, how does our class of maximally entangled mixed
/2 0 0 g(y) states compare with those predicted by Ishizaka and Hi-
roshima[19]? Ishizaka’s two-qubit mixed states, the Werner
state being a specific example, were chosen so that the de-
gree of entanglement of such states cannot be increased fur-
2 C=v=2/3 ther by unitary operations. In contrast, we have derived a
g(y)= vie, =YY= (13) class of states that have the maximum amount of entangle-
1/3, C=y<2/3. ment for a given linear entropfand vice versa Therefore
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1 duced for pure statd®8] and recently demonstrated experi-
0.9 mentally[29]. In Fig. 2 we display the results of the concen-
0.8 tration protocol for two initial conditions. The solid curves
0.7 represent a range of states that are obtainable, from the maxi-
06 mally entangled mixed state, as the concentration protocol is

o5 y=0.66 applied to improve the output state characteristics. We ob-

0.4 Ny 056 serve t_hat for ally, the output_ characteristics can be signifi-
0.3 N cantly improved(solid gray lines. In fact, for y=2/3 the
0.2 maximally entangled mixed state can be concentrated up the
0.1 AN dashed curve to a maximally entangled pure state.
0 . To summarize, we have discovered a class of partially

001 02 03 04 65 08 07 08 08 entangled mixed two-qubit states that have the maximum

amount of entanglement for a given linear entropy. An ana-
Iytical form for these states was derived and they were
shown to have significantly more entanglement for a given
degree of purity than the Werner states. The properties of
these states are still largely unknown and require significant
exploration. Open questions such as “can such states be re-
alized experimentally,” “to what extent do they violate Bell
our states are members of the Ishiz&ltal. class by defini- inequalities,” and “do they have information processing ad-
tion, although they were not explicitly considergtB]. The  vantages over other states” are the subject of current inves-
Ishizakaet al. result indicates that a maximally entangled tigation.

mixed state cannot have the degree of entanglement in-

creased by unitary operations. This state can however have We wish to thank K. Nemoto and G. J. Milburn for en-
its entanglement increased by a simple and experimentallgouraging discussions. W.J.M. and A.G.W. would like to ac-
realizable nonunitary concentration protocol recently proknowledge the support of the Australian Research Council,
posed by Thew and Muni@7]. Such a protocol is based on while D.F.V.J. would like to thank the University of Queen-
generalization of the Procrustean method originally intro-sland for their hospitality during his visit.

FIG. 2. Plot of the tangler versus linear entropy, for the
maximally entangled mixed statdotted ling. By employing a con-
centration protoco[26], an initial state(solid circle can be ma-
nipulated to produce a range of alternative stésedid gray lineg
with improved entanglement and linear entropy characteristics.
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