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We describe in detail the theory underpinning the measurement of density matrices of a pair of quantum
two-level systemg“qubits” ). Our particular emphasis is on qubits realized by the two polarization degrees of
freedom of a pair of entangled photons generated in a down-conversion experiment; however, the discussion
applies in general, regardless of the actual physical realization. Two techniques are discussed, namely, a
tomographic reconstructiafin which the density matrix is linearly related to a set of measured quantiies
a maximum likelihood technique which requires numerical optimizatinn has the advantage of producing
density matrices that are always non-negative definlte addition, a detailed error analysis is presented,
allowing errors in quantities derived from the density matrix, such as the entropy or entanglement of formation,
to be estimated. Examples based on down-conversion experiments are used to illustrate our results.
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[. INTRODUCTION trices with unit trace. The tomographically measured matri-
ces often fail to be positive semidefinite, especially when
The ability to create, manipulate, and characterize quanmeasuring low-entropy states. To avoid this problem the
tum states is becoming an increasingly important area ofmaximum likelihood” tomographic approach to the estima-
physical research, with implications for areas of technologytion of quantum states has been developgd7]. In this
such as quantum computing, quantum cryptography, andpproach the density matrix that is “mostly likely” to have
communications. With a series of measurements on a largeroduced a measured data set is determined by numerical
enough number of identically prepared copies of a quantungptimization.
system, one can infer, to a reasonable approximation, the |n the past decade several groups have successfully em-
quantum state of the system. Arguably, the first such experipjoyed tomographic techniques for the measurement of
mental technique for determining the state of a quantum sygyyantum mechanical systems. In 1990 Ashbetral. re-
tem was devised by George Stokes in 185 His famous  orted the measurement of the density matrix for the nine
four parameters allow an experimenter to_determ_me_ uniquely pievels of then=3 level of hydrogen atoms formed fol-
the polarization state of a light beam. With the insight pro—IOWing collision between i ions and He atoms, in condi-

vided by nearly 150 years of progress in optical physics, we. . . N .
can consider coherent light beams to be an ensemble of tw‘c%)l—onS of high symmetry which simplified the tomographic

level : . groblem[s]. Since then, in 1993 Smithest al. made a ho-
guantum mechanical systems, the two levels being th . . .
two polarization degrees of freedom of the photons; th odyne measurement of the ngner function of a single
Stokes parameters allow one to determine the density matri'SPOd_e of I|ght[9].. Othgr explorations of the quantum states
describing this ensemble. More recently, experimental tech®f Single mode light fields have been made by Breitenbach
niques for the measurement of the more subtle quanturfit &-[10] and Wuet al.[11]. Other quantum systems whose
properties of light have been the subject of intensive invesdensity matrices have been investigated experimentally in-
tigation (see Ref[2] for a comprehensive and erudite expo- clude the vibrations of m_olecule[ﬁZ], the motion of ions
sition of this subjeot In various experimental circumstances and atom$13,14, and the internal angular momentum guan-
it has been found reasonably straightforward to devise &M state of the==4 ground state of a cesium atoh5].
simple linear tomographic technique in which the densityThe quantum states of multiple spjnauclei have been mea-
matrix (or Wigner function of a quantum state is found from sured in the high-temperature regime using NMR techniques
a linear transformation of experimental data. However, therg16], albeit in systems of such high entropy that the creation
is one important drawback to this method, in that the recovof entangled states is necessarily preclufied. The mea-
ered state might not correspond to a physical state because siirement of the quantum state of entangled qubit pairs, real-
experimental noise. For example, density matrices for anyzed using the polarization degrees of freedom of a pair of
quantum state must be Hermitian, positive semidefinite maphotons created in a parametric down-conversion experi-
ment, was reported by us recenfli8].
In this paper we will examine in detail techniques for

*Corresponding author. Mailing address: Mail stop B-283, Losquantum state measurement as it applies to multiple corre-
Alamos National Laboratory, Los Alamos NM 87545. FA05 lated two-level quantum mechanical systefois“qubits” in
667-1931. Email address: dfvj@lanl.gov the terminology of quantum informati@rOur particular em-
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phasis is qubits realized via the two polarization degrees Ofjere H), |V), |5)=(|H>—|V>)/\/§= exp(m/4)(|R)
freedom of photons, data from which we use to illustrate our+i||_>)/\/§' and |R>=(|H)—i|V>)/\/§ are the kets repre-
results. However, these techniques are readily applicable t@snting qubits polarized in the linear horizontal, linear verti-
other technologies proposed for creating entangled states QBL linear diagonal (45°), and right-circular senses respec-

pairs of two-level systems. Because of the central importanC{:Tvely 5 is the (2x2) density matrix for the polarization

of qubit systems to the emergent discipline of quantum Comaegrees of the lightor for a two-level quantum systerand

putation, a thorough explanation of the techniques needed t is a constant dependent on the detector efficiency and light

characterize the qubit states will be of relevance to worker . . ,
) . . . ' intensity. TheStokes parametersvhich fully characterize
in the various diverse experimental fields currently under,

consideration for quantum computation technologg]. the polarization state of the light, are then defined by
This paper is organized as follows. In Sec. Il we explore the _ _ ~ ~

analorzgypwith thegStokes parameters, and how they Eaad natu- So=2no=M(R|p|R)+({L|p|L}),
rally to a scheme for measurement of an arbitrary number of
two-level systems. In Sec. lll, we discuss the measurement
of a pair of qubits in more detail, presenting the validity
condition for an arbitrary measurement scheme and introduc-
ing the set of 16 measurements employed in our experi-
ments. Sec. IV deals with our method for maximum likeli-
hood reconstruction and in Sec. V we demonstrate how to

calculate the errors in such measurements, and how thegge can now relate the Stokes parameters to the density ma-

errors propagate to quantities calculated from the densityrix ;) by the formula
matrix.

S1=2(n;—ng) =M(R|p|L)+(L|p|R)),
S,=2(ny—ng) =Ni((R|p|L)—(L|p|R)),

Ss=2(n3—ng) =M(R|p|R)—(L|p|L)).

'y
Il. THE STOKES PARAMETERS AND QUANTUM STATE P=% = 5.1 23
TOMOGRAPHY

As mentioned above, there is a direct analogy between thVthereUO: [R}R|+|L)(L| is the single qubit identity opera-

measurement of the polarization state of a light beam and thi€" ando; =|R)(L[+|L)(R], op=i[L)(R|=[R)(L], andoy
measurement of the density matrix of an ensemble of two=|R)}R|=[L)(L| are the Pauli spin operators. Thus the

level quantum mechanical systems. Here we explore thi§'eéasurement of the Stokes parameters can be considered
analogy in more detail. equivalent to a tomographic measurement of the density ma-

trix of an ensemble of single qubits.
A. Single qubit tomography B. Multiple beam Stokes parameters: Multiple qubit
The Stokes parameters are defined from a set of four in- tomography

tensity measurement20]: (i) with a filter that transmits The generalization of the Stokes scheme to measure the
5_9% _of the mcydent radiation, 'regardless'of its polar|zqt|on;state of multiple photon beantsr multiple qubit$ is reason-
(_||) Wlth_a p_olanzer thgt transmits only_ horlzon_tally polarlzed ably straightforward. One should, however, be aware that
light; (i ) with a polarlzer that trapsmlts only light polarized important differences exist between the one-photon and the
at 45° to the horizontal; an@v) with a polarizer that trans- multiple photon cases. Single photons, at least in the current
mits only right-circularly polarlzed'hght. The ngmber of context, can be described in a purelassicalmanner, and
photons counted by a detector, which is proportional to thgne gensity matrix can be related to the purely classical con-
classical intensity, in these four experiments is as follows: cept of the coherency matr[21]. For multiple photons one
N N has the possibility of nonclassical correlations occurring,
no:§(<H|;,|H>+<V|;J|V>): 5(<R|Z)|R>+<L|‘B|L>)’ with quintessentially quantum mechanical phenomena such
as entanglement being present. We will return to the concept
of entanglement and how it may be measured later in this
;= A((HIp|H)) paper. | N
N An n-qubit state is characterized by a density matrix
- - - - which may be written as follows:
=5 ((RIpIR) +(Rlp[L)+(L[p[R)+(L|p[L)),
3
. 13:—,1, ‘ E - ril,iz,...,in&il®a’i2®'"®&inv
n,=M(D|p|D)) 2" iniz. in=0 04
N . - - -
:§(<R|p|R>+<L|p|L)—i(L|p|R>+i<R|p|L)), where the 4 parameters; ; . ; are real numbers. The
normalization property of the density matrices requires that
A roo,....c=1, and so the density matrix is specified by 4
ns=M({(R|p|R)). (2.))  —1 real parameters. The symbal represents the tensor
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FIG. 1. Tree diagram representing number and type of measurements necessary for tomography. For a single qubit, the measurements
{,&0,,&1,,&2,,&3} suffice to reconstruct the state, e.g., measurements of the horizontal, vertical, diagonal, and right-circular polarization

components, ii,V,D,R). For two qubits, 16 double-coincidence measurements are neceSgapo( o1, - - - » wais)), increasing to 64
three-coincidence measurements for three quibjisdosto . fLofofty s - - - Jftaftafal), and SO on, as shown.
product between operators acting on the Hilbert spaces asso- 1 0 0 ©O
ciated with the separate qubits. . . 12 12 0 0

Ag Stokes sh_owed, the state of a §|ng_le qubit can be de- Y= . 2.9
termined by taking a set of four projection measurements /2 0 12 O
which are represented by the four operat;&r(F|H><H| 172 0 o 1

+[V)(V], ma=|H)(H|, p2=ID)(D|, ps=|R)(R|. Simi- -
larly, the state of two qubits can be determined by the set oFurther, we have the relation {lrjo} =26;; (where §;; is
16 measurements represented by the operatprsy; (i,j  the Kronecker delta Hence Eq(2.7) becomes
=0,1,2,3). More generally the state of emgubit system can 3

tge de-}ermined py " measurements given by the operators N | =N
wi ®pi, @@ (i,=0,1,2,3 andk=1,2,...n). This Lrenn i, in=0
“tree” structure for multiqubit measurement is illustrated in

Figﬂll.  of thi . ) bl it q Introducing the left inverse of the matriX, defined so that
e proof of this conjecture is reasonably straightforwar 'Ek:o(Y_l)ikij=5ij and whose elements are

The outcome of a measurement is given by the formula

iljlYiZjZ. ' ‘Yinjnril'iZ‘ ""in'

(2.9

1 0 0 O
n=NTr{pu}, (2.5 -1 2 0
Y 1= 10 2 ol (2.10
Whereﬁ is the density matrix;l is the measurement opera- 1.0 0 2
tor, and \V is a constant of proportionality which can be
determined from _the data. Thus in amiqubit case the out- we can find a formula for the parameters;  ; in terms
comes of the various measurement are N ,Lr2retn
of the measured quantities ;| i Viz.,
Ny, i, =N Tr {;’(/’lil(g);”iz@"'@/lin)}- (2.6 N iy
3
tituting f Eq(2.4 tai - — _
Substituting from Eq(2.4) we obtain - D Y 1)i11'1( 1)i2j2' (YY)
. i1.d2. - in=0 mr
. o Xn
L PP in 2”]112,-2-4”70 Tr{#llo'jl} ERLFIRRRE In
=Silip iy (2.11

In Eq.(2.11) we have introduced the-photon Stokes param-
eter Si i, ..., i defined in an analogous manner to the

. - . . single photon Stokes parameters give in E42).
As can be easily verified, the single qubit measurement op- Since, as already noted,  —1, we can make the

eratorsy; are linear combinations of the Pauli operatofs jdentificationS, o, .. =\, and so the density matrix for the
ie., ,ui=EJ-3:0Yijaj , whereY; are the elements of the ma- n-qubit system can be written in terms of the Stokes param-
trix eters as follows:
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photon detector beams of light, whose quanta can be measured by means of
photodetectors. To project the light beams onto a polarization
— state of the experimenter’s choosing, three optical elements
are placed in the beam in front of each detector: a polarizer
“Black Box” Coinci (which transmits only vertically polarized lighta quarter-
i oincidence
source of photon pairs in Detector | ™ wave plate, and a half-wave plate. The angles of the fast axes

arbitrary quantum states output : H H
of both of the wave plates can be set arbitrarily, allowing the
|V) projection state fixed by the polarizer to be rotated into
T any polarization state that the experimenter may wish.
Using the Jones calculus notation, with the convention
photon detector
FIG. 2. Schematic illustration of the experimental arrangement. 0 _ |V> 1 =|H) (3.
QWP stands for quarter-wave platd\WP for half-wave plate; the 1 ' 0 ' ’

angles of both pairs of wave plates can be set independently giving

the_experimenter four degre_es of freedom With which to set theyhere [V) (|H)) is the ket for a vertically(horizontally
_prOjectlon_ s_tate. I_n the experiment, the polarlzers were reallze_d Ugsolarized beam, the effects of quarter- and half-wave plates
ing polarizing prisms, arranged to transmit vertically polarized,yhose fast axes are at anglgsand h with respect to the
light vertical axis, respectively, are given by th&x2 matrices

3
~ 1 $|1,i2 ..... i ~ ~ 1 i—cosiz .
= " 0,00, 8 - ®0; - qQ  sin(2q)
g 2%y zl =0 Soo,...0 01,©01,® - 90i. (2.12 Uowpld)=—=| . ,
e o 2| sin2q)  i+cog2q)

This is a recipe for measurement of the density matrices _

which, assuming perfect experimental conditions and the - [ cod2h)  —sin(Zh)
complete absence of noise, will always work. It is important Unwe(a) = —sin(2h) —cog2h)/"
to realize that the set of four Stokes measurements

{10, 1,12, 13} IS NOt unique: there may be circumstancesThus the projection state for the measurement in one of the
in which it is more convenient to use some other set, whiclbeams is given by
is equivalent. A more typical set, at least in optical experi-

(3.2

ments, is uo=[H)(H|, u1=|VXV], u;=|D)}DI, uj " . . 0
=|RW(R|. |#proj(N,@)) =Uqwp(a) - Unwe(h)- 1
In the following section we will explore more general
schemes for the measurement of two qubits, starting with a =a(h,q)|H)+b(h,q)|V), (3.3
discussion, in some detail, of how the measurements are ac-
tually performed. where, neglecting an overall phase, the functiafts,q) and

b(h,q) are given by
IIl. GENERALIZED TOMOGRAPHIC RECONSTRUCTION
OF THE POLARIZATION STATE OF TWO PHOTONS 1

A. Experimental setup a(h,q)= \/E{Sin(Zh)—i sin2(h—a)1},

The experimental arrangement used in our experiments is
shown schematically in Fig. 2. An optical system consisting 1
of lasers, polarization elements, and nonlinear optical crys- b(h,q)=——={cog2h)+icog2(h—q)]}. (3.9
tals (collectively characterized for the purposes of this paper V2
as a “black box,”) is used to generate pairs of qubits in an
almost arbitrary quantum state of their polarization degrees The projection state for the two beams is given by
of freedom. A full description of this optical system and how
such quantum states can be prepared can be found in Refs| () (h h =M (h 1) (h
[22—24.1 The output of the black box consists of a pair of meJ( 1:01:hz.02)) mej( 1'q1)>®|¢/pr01( 2:02))

=a(hy,q1)a(hy,q,)|HH)

Ut is important to realize that the entangled photon pairs are pro- +a(hy,a1)b(hz,02)|HY)

duced in anondeterministiananner: one cannot specify with cer- +b(hy,q1)athy,q2)|VH)
tainty when a photon pair will be emitted; indeed there is a small
probability of generating four or six or a higher number of photons. +b(hy,q1)b(h2,02) |VV>- (3.5

Thus we can onlypostselectivelyenerate entangled photon pairs:
i.e., one only knows that the state was created after if has been We shall denote the projection state corresponding to one
measured. particular set of wave plate angl¢b, ,,q;,,h,,,0q,,} by
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the ket| ¢V>;2 thus the projection measurement is represented TABLE I. The tomographic analysis states used in our experi-

by the operator,& :W Wi | Consequently, the average ments. The number of coincidence counts measured in projection

number of coincidence counts that will be observed in a{neasfut:]em?ntts pfr?r\]”dt?; a se(; oft16bdatat_thatta(ljlo\\;vvthﬁ denS|tydTha-
given experimental run is rnx o e state O e 0 moaes 1o be estimated. VWe nave use e

notation |D)=(|H)+|V))/y2, [LYy=(|H)+i|V))/y2, and |R)
_ ~ =(|H)—i|V))/\2. Note that, when the measurements are taken in
nV_M¢V|p|¢V> (3.6 the order given by the table, only one wave plate angle has to be

~ . ) ) o changed between measurements.
where p is the density matrix describing the ensemble of

qubits, andV'is a constant dependent on the photon flux and, Mode 1 Mode2 h, a0 h, 9
detector efficiencies. In what follows, it will be convenient to
consider the quantities, defined by 1 [H) |H) 45° 0 45° 0
2 |H) V) 45° 0 0 0
s,=(lply). @7n 3 V) V) o o o 0
4 V) [H) 0 0 45° 0
B. Tomographically complete set of measurements 5 IR) |H) 22 50 0 45° 0
In Sec. Il we have given one possible set of projectioné IR) V) 22.5° 0 0 0
measurementq|#,)(,|} which uniquely determine the 7 |D) [V) 225°  45° 0 0
density matrixp. However, one can conceive of situations in 8 D) IH) 22.5°  45° 45° 0
which these will not be the most convenient set of measure? D) |R) 22.5°  45° 22.5° 0
ments to make. Here we address the problem of finding othet0 ID) ID) 22.5°  45°  225°  45°
sets of suitable measurements. The smallest number of statéb IR) |D) 22.5° 0 225°  45°
required for such measurements can be found by a simpl&2 [H) D) 45° 0 22.5° 45°
argument: there are 15 real unknown parameters that detet3 [V) D) 0 0 225°  45°
mine a 4X4 density matrix, plus there is the single unknown 14 [V) L) 0 0 22.5° 90°
real paramete/, making a total of 16. 15 [H) L) 45° 0 22.5°  90°
In order to proceed it is helpful to convert thex4 matrix 16 IR) L) 22.5° 0 22.5°  90°
p into a 16-dimensional column vector. To do this we use &
set of 16 Iinea.rly independgnt><44 matr?ces{Fy} which Substituting from Eq(3.9) into Eg. (3.6), we obtain the
have the following mathematical properties: following linear relationship between the measured coinci-
A A dence counts, and the elements of the vectoy :
™, -I'}=6,,
16
s n=N2 B,.l, (3.1)
A= 21 [,Tr{l,-A} VA, (3.8 p=1

where the 1& 16 matrixB,, , is given by

where A is an arbitrary 4«4 matrix. Finding a set of’, .

matrices is in fact reasonably straightforward: for example, BV,,L=<¢/1,,|FH|1,/1,,). (3.12

the set of(appropriately normalizedgenerators of the Lie ) . - N
algebra SU(2% SU(2) fulfill the required criteridfor refer- Immediately we find a necessary and sufficient condition for
ence, we list this set in Appendix)AThese matrices are of the completeness of the set of tomographic stgitgs)}: if
course simply a relabeling of the two-qubit Pauli matricesthe matrixB, , is nonsingular, then Eq3.11) can be in-

o®a; (i,j=0,1,2,3) discussed above. Using these matrice¥erted to give

the density matrix can be written as 16
16 r,=()7T X (BTY, .0, (3.13
~ ~ =
p=2 T,r,, (3.9
v=1

The set of 16 tomographic states that we employed is
given in Table I. They can be shown to satisfy the condition
thatB, , is nonsingular. By no means are these states unique
in this regard: these were the states chosen principally for
A . experimental convenience.

r,=THl,p}. (3.10 These states can be realized by setting specific values of
the half- and quarter-wave plate angles. The appropriate val-
ues of these angldmeasured from the vertigadre given in
Here the first subscript on the wave plate angle refers to one ofable I. Note that overall phase factors do not affect the
the two photon beams; the second subscript distinguishes which ¢esults of projection measurements.
the 16 different experimental states is under consideration. Substituting Eq(3.13 into Eq.(3.9), we find that

wherer , is the vth element of a 16-element column vector,
given by the formula
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A N S o . 1 if v=1,2,3,4
p=(\N)T1X M=, My, (3.14 TMI=1g & o5 . 16 (3.18
where the sixteen %4 matricesM , are defined by hence the value of the unknown parametém our experi-
" ments is given by
M,=> (B, ,.T,. 3.1 4
=2 (B7Y,,0, (3.15 S
v=1
The introduction of théM, matrices allows a compact form R .
of linear tomographic reconstruction, E@.14), which will =M(HH|p|[HH)+(HV|p|HV)
be most useful in the error analysis that follows. Thgkg +<VH|;)|VH>+(VV|;)|VV)). (3.19

matrices, valid for our set of tomographic states, are listed in
Appendix B, together with some of their important proper-
ties. We can use one of these properties, (B&), to obtain
the value of the unknown quantity". That relationship im-

plies 16 4
Z)=( 21 Myny) / ( 21 ny). (3.20
2 THM ) (9l p=p. (3.16 N .

Thus we obtain the final formula for the tomographic recon-
struction of the density matrices of our states:

As an example, the following set of 16 counts were taken
Taking the trace of this formula, and multiplying by we  for the purpose of tomographically determining the density
obtain matrix for an ensemble of qubits all prepared in a specific

quantum staten,; =34 749,n,=324, n;=35805,n,=444,

~ ns=16324, ng=17521, n,=13441, ng=16901, n
2 TH{M,}n,=\. (317 17932, ny=32028, ny=15132, np—17238, Ny,
=13171,n4,=17170,n,5=16 722,n,¢= 33 586. Applying
For our set of tomographic states, it can be shown that  Eg. (3.20 we find

0.4872 —0.0042+i0.0114 —0.0098-i0.0178 0.5192i0.0380
R —0.0042-i0.0114 0.0045 0.0271i0.0146 —0.0648-10.0076
P71 —0.0098ri0.0178  0.027%i0.0146 0.0062 —0.0695+i0.0134| (3.29
0.5192-i10.0380 —0.0648+i0.0076 —0.0695-i0.0134 0.5020
|
This matrix is shown graphically in Fig.(@ft). lem is experimental inaccuracies and statistical fluctuations

Note that, by construction, the density matrix is normal-of coincidence counts, which mean that the actual numbers
ized, i.e., Tfp}=1, and Hermitian, i.e.pT=p . However, Of counts recorded in a real experiment differ from those that

when one calculates the eigenvalues of this measureéRn be calculated by E€3.6). Thus the linear reconstruction
density matrix, one finds the values 1.02155, 0.068 123 gis of limited value for states of low entropyhich are of
—0.065 274, and-0.024 396: and also {_’32}:1.053. Den- most exp_erlmenta_ll interest because of their application to

i i for all phvsical stat th th ; uantum information technologyhowever, as we shall see,
S| y.?a rices _grfe_l 'tp ysica Sh"’.l es must avtg € Q{fhoptﬁry e linear approach does provide a useful starting point for
positive semidetiniteness, w icfin conjunction wi € the numerical optimization approach to density matrix esti-
normalization and Hermiticity propertiegmplies that all of

) L . i . mation which we will discuss in the next section.
the eigenvalues must lie in the intery&l,1], their sum being

1; this in turn implies that & Tr{p?}=<1. Clearly, the density
matrix reconstructed above by linear tomography violates
this condition. From our experience of tomographic mea-
surements of various mixed and entangled states prepared As mentioned in Sec. lll, the tomographic measurement
experimentally, this seems to happen roughly 75% of theof density matrices can produce results that violate important
time for low-entropy, highly entangled states; it seems tobasic properties such as positivity. To avoid this problem, the
have a higher probability of producing the correct result formaximum likelihood estimation of density matrices may be
states of higher entropy, but the cautious experimenteemployed. Here we describe a simple realization of this tech-
should check every time. The obvious culprit for this prob-nique.

IV. MAXIMUM LIKELIHOOD ESTIMATION
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FIG. 3. Graphical representation of the den-
sity matrix of a state as estimated by linear to-
mography(left) and by maximum likelihood to-
mography (right) from the experimental data
given in the text. The upper plot is the real part of

p, the lower plot the imaginary part.

A Basic approach T Ty =(w'l9)=0, 4.2
Our approach to the maximum likelihood estimation of
the density matrix is as follows. where we have definett)’)="T|y). Furthermore, T'T)"

(i) Generate a formula for an explicitly “physical” density Z'?T('TT)TZ'T'T'T' i.e. =TT must be Hermitian. To ensure
matrix, i.e., a matrix that has the three important pmpertie%ormalization c’m'e .(':an simply divide by the tréce' thus the
of normalization, Hermiticity, and positivity. This matrix will A '
be a function of 16 real variablédenotedit; ,t,, . . . tyg).  Malrixg given by the formula
We will denote the matrix ap,(ty,ty, . . . t1e).

(ii) Introduce a “likelihood function” which quantifies
how good the density matri,%p(tl,tz, ... t1g) isin relation
to the experimental data. This likelihood function is a
function of the 16 real parameters, and of the 16
experimental datan,. We will denote this function as

g=TT/Tr{TTT} 4.3

has all three of the mathematical properties that we require
for density matrices.

For the two-qubit system, we have &4 density matrix
with 15 independent real parameters. Since it will be useful

L(ty to, . tieiN1 N2, - Nig). o . to be able to invert relatiof4.3), it is convenient to choose a
(i) Using standard numerical optimization techniques, . A

find the optimum set of variable{°P?,t{PY ... t{evvy  tridiagonal form forT:

for which the functionC(t;,t5, ... tig;N1,N5, ... ,Nye) has

its maximum value. The best estimate for the density matrix t 0 0 0

is thenp(t{°PY 1PV . t(oPY), R ts+itg t, 0
The details of how these three steps can be carried out are T(t)= ty ity  to+itg ts 0 (4.4

described in the next three subsections. . . .
tistityg tiatityy tgtityy 14

B. Physical density matrices o ) . A
) . _ Thus the explicitly “physical” density matriyp, is given
The property of non-negative definiteness for any matnxby the formula

G is written mathematically as

(WGl9=0 Vy). .1 P =TT OTO/THT (T (V). 4.5

Any matrix that can be written in the forgi=T" must be For future rgference, the mversg relationship, by which
non-negative definite. To see that this is the case, substitu8€ elements ol can be expressed in terms of the elements
into EqQ. (4.2) of p, is as follows:
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A
0 0 0
VIR

1
M MT
| AMEPMP,, My,
T= (4.6)
2 2
M (12),23 M (11),23 M 121,22 0
\ P44\/ M (121),22 v P44\/ M (121),22 Pas
Pa1 P42 P43 —
—— - a— Pas
VP44 VP44 VP44

Here we have used the notatidr= Det(p); M i(l-l) is the first ~WhereN=3%_,n,.

minor of p, i.e., the determinant of the>33 matrix formed ~ Rather than find the maximum value B(t,,t;, . . . tig)
by deleting theith row andjth column ofp; Mi(jZ)kI is the It S|mpl|f|es tr_ung_s somewhat_to find the maximum of its
second minor of;, i.e., the determinant of the>Qé matrix '°9‘f"“Fhm. (which is mathematlcall_y e_zquwal_e)p"’c Thus the
formed by deleting théth and kth rows andjth and Ith optimization problem reduces to finding th@nimumof the

N following function:
columns ofp (i#k andj#1). otiowing function

C. The likelihood function

_ o L(t1,ts, ... te)
The measurement data consist of a set of 16 coincidence
countsn, (»v=1,2,...,16) whose expected value in, B ® [N, pp(ty o, - tie)|$,)— 1,12
=M,|ple,). Let us assume that the noise on these coin- =t 2N<¢V|;>p(t1,tz, b))
cidence measurements has a Gaussian probability distribu-
tion. Thus the probability of obtaining a set of 16 counts (4.10
{n1,Ny, ...Nyg is

This is the “likelihood” function that we employed in our

16
IT ex

1 (n,—n,)2 numerical optimization routine.
P(nl,nz, ...,an)I— - Y Y y
Nnorm v=1 20']2,
(4.7) D. Numerical optimization
where o, is the standard deviation for theth coincidence We used theMATHEMATICA 4.0 routine FINDMINIMUM

measuremenigiven approximately by/n,) andN,,mis the  which executes a multidimensional Powell direction set al-
normalization constant. For our physical density mafrp< gorithm (see Ref[25] for a description of this algorithimTo
the number of counts expected for thth measurement is ~ €xecute this routine, one requires an initial estimate for the

values oftq,t,, ... t15. For this, we used the tomographic
— A estimate of the density matrix in the inverse relatidmb),
N(tity, - i) =Ml pp(tata, - tig|1h,). allowing us to determine a set of values fgrt,, .. .t.
4.8 Since the tomographic density matrix may not be non-
Thus the likelihood that the matri/ip(tl,tz, ... i) could negative definite, the values of thgs deduced in this man-
produce the measured ddta ,n,, . .. Ny is ner are not necessarily real. Thus for our initial guess we

used the real parts of the's deduced from the tomographic
density matrix.

P(Ng,Nz, ... M) For the example given in Sec. Il, the maximum likelihood
1 s estimate is
= I1 ex
Nnorm v=1 ;{
~ 3 . .
[M ¢V|Pp(t1.t2, e,y —n, 12 Note that here we neglect_ the dependence of the normal!zatlon
- = , (4.9 constant ortq,t,, ... t;5, Which only weakly affects the solution
2N, |pp(teta, . ti)|40,) for the most likely state.
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0.5069 —0.0239+i10.0106 —0.0412-i0.0221 0.4833i0.0329
. —0.0239-i0.0106 0.0048 0.0023i0.0019 —0.0296-i0.0077
P7| —0.0412+i0.0221  0.00230.0019 0.0045 —0.0425+i0.0192] " (413
0.4833-i0.0329 —0.0296+i0.0077 —0.0425-i0.0192 0.4839
|

This matrix is illustrated in Fig. 3right). In this case, the 4 1 if 1sv<4
maErix has eigenvalues 0.986 022, 0.0139777, 0, and 0; and D,= E S ,= (5.5
Tr{p?}=0.972 435, indicating that, while the linear recon- A=1 0 if 5sv<16.

struction gave a nonphysical density matrix, the maximum o ) )
likelihood reconstruction gives a legitimate density matrix. Substituting from Eq(5.4) into Eq.(5.2) and using Eq(5.3),
we obtain the result

V. ERROR ANALYSIS n.n
viu

N3

— N
55v55u=/\7’;5v,u+ (1-D,—D,). (5.6)

In this section we present an analysis of the errors inher-
ent in the tomographic scheme described in Sec. Ill. Two
sources of error are found to be important: the shot noisén most experimental circumstanc&$>1, and so the second
error in the measured coincidence coungsand the uncer- term in Eq.(5.6) is negligibly small in comparison to the
tainty in the settings of the angles of the wave plates used tbirst. We shall therefore ignore it, and use the approximate
make the tomographic projection states. We will analyzesxpression in the subsequent discussion:
these two sources separately.

In addition to determining the density matrix of a pair of " S,
qubits, one is often also interested in quantities derived from 98,08, ~ J\?@»,uz X/&w- (5.7)
the density matrix, such as the entropy or the entanglement
of formation. For completeness, we will also derive the er-

rors in some of these quantities. B. Errors due to angular settings uncertainties
Using the formula3.7) for the parameters, we can find
A. Errors due to count statistics the dependence of the measured density matrix on errors in

the tomographic states. The derivativespfwith respect to

From Eq.(3.20 we see that the density matrix is specified some generic wave plate setting anglés

by a set of 16 parametess defined by

ds, [ 9 - 0
Sv=nuJN, 6.1 M={%<¢V|]plwy>+<wylp[ﬁ|%>], (5.8

where n, are the measured coincidence counts axid
=Eﬁ:1ny. We can determine the errors $) using the fol-
lowing formula[26]:

where|#,) is the ket of thevth projection statdsee Eq.
(3.95)]. Substituting from Eq(3.14) we find

16

16 v
- ds,\[ds,\ — =>'s
— d fad a6 =1 *
38,05, ME:,l (anJ(&nK) on,on,, (5.2 w

d ~ ~ J
(5.9
where the overbar denotes the ensemble average of the ran- For convenience, we shall label the four wave plate angles

dom uncertainties’s, and on, . The measured coincidence {h1,.91,.h2,.9,}, which specify the vth state by
countsn, are statistically independent Poissonian random 0,,1,0,2,0, 3,0, 4}, respectively. Clearly thath state does

variables, which implies the following relation: not depend on any of theth set of angles. Thus we obtain
the following expression for the derivatives sf with re-
SN,on,=n, S, ., (5.3  Spectto wave plate settings:
_ s 16
where s, . is the Kronecker delta. _ v 5%%2 Suf(vl,);u (5.10
Taking the derivative of Eq5.1), we find that a0\ p=1
7s, 1 S n, 5 y where
an, NTEV N2V o4 £(0) J v VPR
v, Wv,l<d/]}| ,u|lr/,1/>+<lr/,1/| “w lelpl) .
where (5.11)
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The 1024 quantitie$!), can be determined by taking the whereM ;, is thei,j element of the matriM, .
derivatives of the functional forms of the tomographic states A convenient way in which to estimate errors for a maxi-
given by Eqgs.(3.4) and (3.5, and evaluating those deriva- mum likelihood tomographic techniqueather than a linear
tives at the appropriate values of the argumésé® Table)l  tomographic techniqyeis to employ the above formulas,
The errors in the angles are assumed to be uncorrelategdjth the slight modification that the parametgr should be
as would be the case if each wave plate were adjusted faecalculated from Eq(3.7) using the estimated density ma-

each of the 16 measurements. In reality, for qubit experiyj, 5 This does not take into account errors inherent in
ments, only one or two of the four wave plates are adjustegha maximum likelihood technique itself.

between one measurement and the next. However, the as-
sumption of uncorrelated angular errors greatly simplifies the
calculation(which is, after all, only arestimateof the er-
rors), and seems to produce reasonable figures for our error When calculating the propagation of errors, it is actually

C. Errors in quantities derived from the density matrix

bars? Thus, with the assumption more convenient to use the errors in #ygparameterggiven
by Eqg.(5.19], rather than the errors in the elements of den-
60,60, ;=97,,6 (A )2 (5.12 sity matrix itself (which have non-negligible correlations
(whereA 6 is the rms uncertainty in the setting of the wave 1. Von Neumann entropy

plate, with an estimated value of 0.25° for our apparatue
obtain the following expression for the errors sp due to
angular settings:

The von Neumann entropy is an important measure of the
purity of a quantum statg. It is defined by[27]
4

6 ~ ~
. f0 filss,. (513 S=-Tr{plogy(p)}= —gl palogpa,  (5.17)

M»a

v,

4
0s,08,= 5%#2
i=1¢€

>
I

Combining Eqs(5.13 and (5.7) we obtain the following Wherep, is an eigenvalue o, i.e.,
formula for the total error in the quantities :

;J|¢a>= pal da)s (5.18
8s,05,=06, A\, (5.149
| ) being theath eigenstated=1, . . . ,4). Theerror in this
where quantity is given by
S 4 16 16 5
A=t 2 010 ss, | (5.19 (A85)?2=2 ( ) A,. (5.19
N S 2 e »=1\0S,

These 16 quantities can be calculated using the paranssters Applying the chain rule, we find
and the constant[sﬁ,'v)e. Note that the same result can be ob-
tained by assuming priori that the errors in the, are all Pa\ [ IS 59
uncorrelated, withA ,=§s2; the more rigorous treatment ds, )\ dpa)” (5.29
given here is necessary, however, to demonstrate this fact.
For a typical number of counts, say=10 000" itis found  The partial differential of an eigenvalue can be easily found
that the contribution of errors from the two causes is roughlyby perturbation theory. As is well knowre.g., [28]) the
Sompar_ﬁbgﬂ for |6}[Lge:j numbeis of counfts, the angular sethange in the eigenvalue, of a matrixW due to a pertur-
ings will become the dominant source of error. L R

Based on these results, the errors in the values of thgatIon In the matrixsW is
various elements of the density matrix estimated by the lin-

a8
Js

=2

v

ear tomographic technique described in Sec. Ill are as fol- Oa=(a| OW| ). (521
lows: ~
where | ¢,) is the eigenvector ofV corresponding to the
16 api . Ap: 16 eigenvalue\,. Thus the derivative ol , with respect to
2= il it = S )2 some variable is given b
(5.16 INa oW 5o
x| Pa 5| Pal- (5.22

“4In other experimental circumstances, such as the measurement gﬁ
the joint state of two spin-1/2 particles, the tomography would be
realized by performing unitary operations on the spins prior to mea-
surement. In this case, an assumption analogous to ours would be
wholly justified. d

ncep=3.M,s,, we find that

JPa N
= = (al W1, 6 (5.23
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and so, taking the derivative of E¢5.17), Eq. (5.20 be-
comes

4
[1+In Pal
) Z (¢alM T- (5.249

Hence

1 ‘ 1+Inp, 2
(asP=3, (2 (Gl Pel |y
(5.25

For the experimental example given abov&=0.106
+0.049.

2. Linear entropy

The “linear entropy” is used to quantify the degree of

PHYSICAL REVIEW A64 052312

quantum stat¢29]. For two qubits, concurrence is defined

as follows: consider the non-Hermitian matfi pSp'S
where the superscript T denotes the transpose and the “spin

flip matrix” S is defined by

0 0 0 -1

.l o 01

**'o 10 o0 (5.29
-1 00 O

Note that the definition o depends on the basis chosen; we
have assumed here the “computational basis”
{{HH),[HV),|VH),|[VV)}. In what follows, it will be conve-

nient to writeR in the following form:

16
z q,u,vs/.LS

w,v=1

- 1
R= > (5.30

mixture of a quantum state in an analytically convenientyhere qM V_|\/| EMTE+M EMTE The left and right

form, although unlike the von Neumann entropy it has no
direct information theoretic implications. In a normalized

form (defined so that its value lies between zero ahdHe
linear entropy for a two-qubit system is defined by

=—(1 Tr{p?h) =7 (1 2 Pa) (5.26

To calculate the error in this quantity, we need the following=

partial derivative:

4
JP 8 IPa
asv_—gazl pa(?_sv
8 4
:_§ Z a<¢a|M |¢a>
8 16
=-3 TH{M,M,}s, . (5.2

x
1
u

Hence the error in the linear entropy is

16 2 16 2
(AP)?= E (j:) 2( 2 Tr{M N1 }s)
(5.28

For the example given in Secs. lll and IN?=0.037

+0.026.

3. Concurrence, entanglement of Formation, and tangle

eigenstates and eigenvalues of the maRiwe shall denote
by (€al, |£a), andr 4, respectively, i.e.,

<§a||’:\2:ra<§a|v

RIZay=Talla)- (5.31)

We shall assume that these eigenstates are normalized in the
usual manner for biorthogonal expansions, i.€&s|¢p)

dap- Further we shall assume that the eigenvalues are
numbered in decreasing order, so thaer,=r;=r,. The
concurrence is then defined by the formula

C=max0,ri—rp—rs—rg}
=ma><{ O,Zl sgr(g—a \/r_a} )

where sgn¥)=1 if x>0 and sgnf)=—1 if x<0. The
tangle is given byT=C? and the entanglement of formation
by

(5.32

(5.33

1+\/1—c2)
2 1

whereh(x) = —xlog,x— (1—x)log,(1—x). Becausé(x) is

a monotonically increasing function, these three quantities
are to some extent equivalent measures of the entanglement
of a mixed state.

To calculate the errors in these rather complicated func-
tions, we must employ the perturbation theory for non-
Hermitian matricegsee Appendix C for more detajilsWe
need to evaluate the following partial derivative:

The analysis in this subsection applies to the two-qubit case only.
Measures of entanglement for mixaejubit systems are a subject
of ongoing research: see, for examgdl@Q] for a recent survey. It

The concurrence, entanglement of formation, and tanglénay be possible to measure entanglement directly, without quantum
are measures of the quantum coherence properties of a mixethte tomography; this possibility was investigatedd).
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Y. {§_a;<§ §§>
SR PR E A
6 APPENDIX A: THE I' MATRICES
3 1 R R
= sgn;—al—— S , i ;
a; ;Zl 9"(2 )2\/r_a<§a|q”’v ul La) One possible set of matrices are generators of SU(2)

®SU(2), normalized so that the conditions given in Eq.
(5.39 (3.8 are fulfilled. These matrices are

where the function sgmi{ is the sign of the quantity: it

takes the value 1 ik>0 and —1 if x<0. Thus sgn(3/2
—a) is equal to+1 if a=1 and—1 if a=2,3, or 4. Hence 1
the error in the concurrence is F1:§

o O +—» O
o O O -
=~ O O O

= ~ 1
a=1 u=1 F3

) 2

A,.

O O O -
o |
=
o »r O O
>
=
o B O O
= O O O
O O O -
o O -, O

1 -
m<§a|q,u,vs,u| ga)

For our example the concurrence is 0.963018. ~ 1
Once we know the error in the concurrence, the errors in F5=§

the tangle and the entanglement of formation can be found

straightforwardly:

-
-

=, O O O
o » O O
o O +—» O

AT=2CAC, (5.36

1+1-C? 1

C .
5 )AC, (5.37) fr=3

AE= h'

J1-C?

whereh’(x) is the derivative oth(x). For our example the
tangle is 0.928 0.034 and the entanglement of formation is
0.947+0.025.

- O O

o r O O
o
o O O b+

VI. CONCLUSIONS f‘gzl
In conclusion, we have presented a technique for recon- 2

structing density matrices of qubit systems, including a full i 0 0 O -1

error analysis. We have extended the latter through to calcu-

lation of quantities of interest in quantum information, such

as the entropy and concurrence. Without loss of generality,

we have used the example of polarization qubits of entangled 1

photons, but we stress that these techniques can be adapt5d1=§

to any physical realization of qubits.

o O O
o O
|
o
>
=
o

o B O O

- O
>
o O +» O
|
-
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1 0 0 1 0 0O 0 0 2 —(1+i)
; 0 -1 0 O 1: 1/0 1 0 O ~ 1 0 0 —(1-i) 0
210 0 -1 0of° ®2loo0 10 Ms=7 2 —(1+1) 0 0
0 O 0 1 0 001 —(1-1) 0 0 0
(A1) (B1)
As noted in the text, this is only one possible choice for these 0O 0 0 i 00 0 1
matrices, and the final results are independent of the choice.
. 0 —-i 0 R 0 010
Mgz . ) MlO_ ’
APPENDIX B: THE M MATRICES AND SOME OF THEIR o 1 00 0100
PROPERTIES -i 0 0 O 1 0 0 O
The M matrices, defined by Eq3.15, are as follows: 0 0 0 i
2 —(1—-i) —(1+i) 1 . 0 i 0
: . M= o —i o ol
- 1] —(@A+i) 0 [ 0 !
M=ol —aamiy =i ol -i 0 00
1 0 0 .
0 2 0 —(1+i)
0 —(1-i) 0 1 i 2 0 —(1+i) 0
o1 -+ 20—+ e 0o -(1-i o0 o |
M2l o i o o | -(1-i) 0 0 0
1 —(1+i) O 0 .
0 0 —(1+i)
0 0 0 1 1 1 0 —(1+i) 0
. 1]0 0 i —(1+1) 1372 —(1-1) 0 2 ’
Ms=321 o —i 0 —(1-i) |’ —(1—|) 0 2 0
1 —(1-i) —(1+i) 2
0 0 —(1-i)
0 0 —(1+i) 1 R 1 0 —(1-10) 0
. 1/ 0 0 i 0 Mi=3 —(1+i) 0 -2i |
Mi=3 —(1—i) —i 2 -1-i |’ —(1+|) 0 2i 0
1 0 —(1+i) 0
0 =2i 0 —(1-i)
0 0 2i —(1+i) R 1 2i 0 (1-i) 0
. M ie=—
o 1 0 0 (1-i) 0 1572 0 (1+i) O 0 ’
521 —2i (1+i) 0 0 ’ —(1+i) 0 0 0
—(1-i) 0 0 0
0 0 1
0 0 0 —(1+1) R 0 -1 0
P 0 (1-i) 2i Mis=| g _1 0|
721 0 (1+i) 0 o |’ 1 0 0
—-(1-i) -2i 0 0
The form of these matrices is independent of the chosen
0 0 0 —(1+1i) set of matricegI",} used to convert the density matrix into a
1 0 0 —(1-1) 2 column vector. However, th8l, matricesdo depend on the
M7=§ . , set of tomographic stateg, ).
0 —(1+1) 0 0 There are some useful properties of these matrices which
—(1-1) 2 0 0 we will now derive. From Eq(3.15), we have
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r—(0) (1) 2.(2)
0 - _ ri=r O nriV+a2rP+ .. (C4)
WMy, =2 (DT 9) (B ™D, (B2 R
|§;>:|§a >+)\|£a >+)\2|£a >+"'! (CS)
From Eq.(3.12 we have(y,|T"\|¢,)=B,.,; thus we ob- (&)= (EO 4+ N (ED| N2+ .. (C6)
tain the result
(P ,)=6,,. (B3  Writing R'=Ry+X\ R, and comparing terms of equal pow-

ers of A in the eigenequations, one obtains the following
If we denote the basis set for the four-dimensional Hilbertformulas:
space by{|i) (i=1,2,3,4}, then Eq.(3.14 can be written as

follows: Rol ¢ =rP[¢), (C7)
~ ~ ~ (0)|R . — r(0)/ £(0)
GP=3 S GIMD@I KN ©4) alRo=ra e, 8
| (Ro—rPN[e)y=—(sR-rP[e),  (C9)
Since Eq.(B4) is valid for arbitrary statep, we obtain the . . .

following relationship: (EPIRy—r P =—(£D](sR—1 (D). (C10
D GINLD K ) = BBy (B5) Equations(C7) and(C8) imply that, as might be expected,

' 18 =12a), (C11)

Contracting Eq(B5) over the indicesi(j) we obtain <§§io)|:<§a|, (C12

2 THM ) (o =T, (B6) rO=r,. (C13

Taking the inner product of E4C9) with (&,|, and using the

wherel is the identity operator for our four-dimensional Hil- biorthogonal property EGC3), we obtain

bert space.
A second relationship can be obtained by contracting Eq. r{=(&/6RIZa).- (C14
(B5), viz.,
This implies that
i|M,|j)}=46:, B7 , .
EV < | |J> . ( ) 5raEra_ra~<§a|5R|§a>- (C15)
or, in operator notation, Thus, dividing both sides by some differential incremént
and taking the limitéx— 0, we obtain
EV M, =1. (BY) e || oR e
T\ al o1 dal (C19

APPENDIX C: PERTURBATION THEORY FOR NON- ) )
HERMITIAN MATRICES Using the completeness property of the eigenstates,

s =1, and the identityRy=3,r , we obtain
Whereas perturbation theory for Hermitian matrices istl?té'ﬁgfog\ﬂmg formula Ro=Zor ol 6)(l

covered in most quantum mechanics textbooks, the case o

non-Hermitian matrices is less familiar, and so we will . - 1
present it here. The problem is as follows. Given the (Ro=ral)*=2 rb_ra|§b><§b|' (€17
eigenspectrum of a matri, [32], i.e., bia
(&alRo=T4(&4l, (C1)  Applying this to Eq.(C9) we obtain
Rol¢a)=Tal¢a), (c2 : (€] 3RI¢a)
wooe EiUSIIASIIAEEDY Tra | £6)-
where o b a
C18
<§a| §b>: 5a,ba (C3 ( )
Similarly, Egs.(C10 and(C17) impl
we wish to find expressions for the eigenvalugsind eigen- imilarly, Egs.(C10 and (C17) imply
states(£,| and|{}) of the perturbed matriR’ =Ry+ SR. (£ 6RIZ0)
We start with the standard assumption of perturbation  {8&,|=(8¢L—(8&.~— 2 — | (&l
theory, i.e., that the perturbed quantitie’s, (£;|, and|Z}) N b "a
can be expressed as power series of some parameter (C19
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