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Simple scheme for efficient linear optics quantum gates
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Centre for Quantum Computer Technology, University of Queensland, QLD 4072, Australia
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We describe the construction of a conditional quantum control-NOT ~CNOT! gate from linear optical elements
following the program of Knill, Laflamme, and Milburn@Nature 409, 46 ~2001!#. We show that the basic
operation of this gate can be tested using current technology. We then simplify the scheme significantly.
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I. INTRODUCTION

Optics would seem to be a strong contender for realiz
quantum computation circuits. Photons are easily man
lated and, as the electro-magnetic environment at optical
quencies can be regarded as vacuum, are relati
decoherence-free. Indeed one of the earliest proposals@1# for
implementing quantum computation was based on enco
each qubit in two optical modes, each containing exactly
photon. Unfortunately, two qubit gates require strong int
actions between single photons. Such interactions would
quire massive, reversible nonlinearities well beyond th
presently available.

Recently Knill, Laflamme, and Milburn~KLM ! found a
way to circumvent this problem and implement efficie
quantum computation using only passive linear optics, p
todetectors, and single photon sources@2#. This efficient
linear-optical quantum computing~ELOQC! is distinct from
other linear-optical schemes@3# that are not efficiently
scalable.

Although containing only linear elements, the optical n
works described by KLM are complex and would prese
major stability and mode matching problems in their co
struction. There is thus considerable interest in finding
simplest physical implementations of the KLM technique
In this manuscript we investigate this problem and find
major simplification of the original proposal.

We begin by reviewing the technique via which nondet
ministic gates can be used to implement an efficiently s
able system and in Sec. III the physics of a basic nonde
ministic gate, the nonlinear sign-shift~NS! gate, is discussed
In Sec. IV we describe the construction of a nondetermini
quantum control-NOT ~CNOT! gate using two NS gates. Fu
scalability of this gate requires high efficiency, zero-, on
two-photon discriminating photon counters. Such detec
presently only exist in prototype form@4#. However, in Sec.
V we show that the basic operation of this circuit can
tested with current detector technology. We then describe
simplified gate.

A nondeterministicCNOT gate with a simple linear archi
tecture, but requiring triggered entangled sources as a
source, has been suggested recently@5#. In contrast our
scheme requires only separable input states. Also rece
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proposed is a linear optical scheme for the probabilistic
rification of nonmaximal polarization entangled states@6#.
Although the linear elements play the role ofCNOT gates in
this protocol, they do not exhibit the fullCNOT logic of the
gates described here.

II. GATE OPERATION VIA TELEPORTATION

Arbitrary quantum-gate operations can be implemente
one has the ability to implement arbitrary single-qubit ro
tions and two-qubitCNOT gates. Single-qubit operations ca
easily be implemented with single photons and a nonde
ministic CNOT gate is described in this paper. However,
cascaded sequence of such nondeterministic gates wou
useless for quantum computation because the probabilit
many gates working in sequence decreases exponent
This problem may be avoided by using a teleportation p
tocol @7# to implement quantum gates. The idea that telep
tation can be used for universal quantum computation w
first proposed by Gottesman and Chuang@8#.

A teleportation circuit is represented in Fig. 1~a!. A qubit
in an unknown stateua& is teleported by making a joint Bel
measurement~B! of it and one half of a Bell pairuF&. De-
pending on the result of the measurements,sx and sz ma-
nipulations are made on the other half of the Bell pair res
ing in accurate reconstruction of the unknown state. A k
issue is that the Bell pair plays the role of a resource in
protocol. That is, it can be prepared ‘‘off-line’’ and then us
when necessary to teleport the qubit. Now consider the qu
tum circuit shown in Fig. 1~b!. Two unknown qubits are
individually teleported and then aCNOT gate is implemented
Obviously, but not very usefully, the result isCNOT operation
between the input and output qubits. However, as shown
Ref. @8#, the commutation relations betweenCNOT and sx
and sz are quite simple, such that the circuits of Figs. 1~b!
and 1~c! are in fact equivalent. But in the circuit of Fig. 1~c!
the problem of implementing aCNOT gate has been reduce
to that of producing the required entanglement resource.
entanglement resource required could be produced f
separable input states using threeCNOT gates: one each to
produce the Bell pairs plus the one shown in Fig. 1~c!. But
the point is that these need not be deterministic gates. N
deterministicCNOT gates could be used in a trial and err
manner to build up the necessary resource off-line. It co
then be used when required to implement the gate.

A remaining issue is the performance of the Bell measu
ments required in the teleportation protocol. These canno
©2001 The American Physical Society14-1
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performed exactly with linear optics. KLM showed that b
using the appropriate entangled resource the teleporta
step can be made near deterministic. The near determin
teleportation protocol requires only linear optics, phot
counting, and fast feedforward, albeit with a significant
source overhead. Alternatively, progress has recently b
made towards implementing Bell measurements using n
linear optics@9#.

III. THE NS GATE

The basic element in the construction of our nondeterm
istic CNOT gate is the NS gate@2#. This is a nondeterministic
gate the operation of which is conditioned on the detection
an auxiliary photon. When successful the gate impleme
the following transformation on signal stateuc&:

uc&5au0&1bu1&1gu2&→uc8&50.5~au0&1bu1&2gu2&),

~1!

where the lack of normalization of the transformed state
flects the fact that the gate has a probability of succes
0.255(0.5)2.

Figure 2 shows a realization of this gate. Two anci
modes are required. A single photon is injected into one
the ancilla and the other is unoccupied. The first, second,
third beam splitters have intensity reflectivitiesh1 , h2, and
h3 respectively. The beam splitters are phase asymme

FIG. 1. Review of teleportation of gates.~a! shows a basic tele
portation circuit.~b! shows two such circuits with aCNOT imple-
mented post teleportation.~c! shows the effect of commuting th
CNOT through thesx (X) and sz (Z) operations. The dotted line
encloses the entanglement resource which could be produced
nondeterministic gates.
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transmission from either side and reflection off the ‘‘blac
surface of these beam splitters results in no phase cha
while reflection off the ‘‘gray’’ surface results in a sig
change. When a single photon is counted at the ‘‘1’’ anc
output and no photon is counted at the ‘‘0’’ ancilla output~as
indicated in the figure! the transformation of Eq.~1! is imple-
mented if a suitable choice of beam-splitter reflectivities
made. Let us see how this works.

Suppose first that the signal mode is in the vacuum st
i.e., uc&5u0&. The probability amplitudeC for the ancilla
photon to appear at the ‘‘1’’ output port is given by

C5Ah1h2h31A~12h1!~12h3!. ~2!

Now suppose the input is a single photon state, i.e.,uc&
5u1&. If a photon arrives at the ‘‘1’’ output port and n
photon arrives at the ‘‘0’’ port then a single photon must ha
exited the signal output. We wish the probability amplitu
for this event to also beC. This means

C5Ah1h3~12h2!2@Ah1h2h31A~12h1!~12h3!#Ah2

5Ah1h3~12h2!2CAh2 ~3!

and thus

C5
Ah1h3~12h2!

11Ah2

. ~4!

Finally we consider the situation of a two photon input, i.
uc&5u2&. If a single photon arrives at the ‘‘1’’ port and n
photon arrives at the ‘‘0’’ port then two photons must ha
exited at the signal output. To obtain the sign change of
~1! we require the probability amplitude for this event to
2C. This means

2C52Ah1h3h2~12h2!2Ah2$Ah1h3~12h2!

2@Ah1h2h31A~12h1!~12h3!#Ah2%

5h2C22Ah1h2h3~12h2!. ~5!

Substituting Eq.~4! into Eq. ~5! gives the result

h25~A221!2. ~6!

Substituting back into Eq.~4! and Eq.~2! we can solve for
h1 , h3, andC. The maximum value forC is achieved when

ing

FIG. 2. Schematic of NS gate. Gray indicates the surface fr
which a sign change occurs upon reflection. The use of this be
splitter phase convention is convenient but not essential.
4-2
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FIG. 3. Schematic ofCNOT gate. Gray indi-
cates the surface from which a sign change o
curs upon reflection. Note that ifB1 andB4 were
not present the gate would implement a cont
sign shift.B1 andB4 play the role of Hadamard
gates coverting sign shift toCNOT operation.
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h15h35
1

~422A2!
~7!

and is

C50.5. ~8!

Thus the transformation of Eq.~1! is implemented wheneve
a single photon is recorded at port ‘‘1’’ and no photon
found at port ‘‘0.’’ On average this will occur 25% of th
time sinceuCu250.25.

IV. THE CNOT GATE

A conditional CNOT gate can now be implemented usin
two NS gates. The layout for doing this is shown schem
cally in Fig. 3. We employ dual rail logic such that the ‘‘con
trol in’’ qubit is represented by the two bosonic mode ope
torscH andcV . A single photon occupation ofcH with cV in
a vacuum state will be our logical 0, which we will writeuH&
~to avoid confusion with the vacuum state!. While a single
photon occupation ofcV with cH in a vacuum state will be
our logical 1, which we will writeuV&. Of course superposi
tion states can also be formed. Similarly the ‘‘target in’’
represented by the bosonic mode operatorstH andtV with the
same interpretations as for the control. The beam splitt
B1, B2, B3, andB4 are all 50:50.
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The four modescH , cV , tH, and tV are all the same po
larization. The use of the ‘‘H,’’ ‘‘V’’ nomenclature alludes to
the standard situation in which the two modes of the dual
logic are orthogonal polarization modes. Conversion of a
larization qubit into the spatial encoding used to implem
theCNOT gate can be achieved experimentally by passing
photon through a polarizing beamsplitter, to spatially se
rate the modes, and then using a half-wave plate to rotate
of the modes into the same polarization as the other. A
the gate, the reverse process can be used to return the e
ing to polarization.

The layout of Fig. 4 contains two nested, balanced Ma
Zehnder interferometers. The target modes are combined
then reseparated forming the ‘‘T’’ interferometer. One arm
the T interferometer and thecV mode of the control are com
bined to form another interferometer, the ‘‘C’’ interferomete
NS gates are placed in both arms of the C interferometer.
essential feature of the system is that if the control photo
in the cH mode then there is never more that one photon
the C interferometer, so the NS gates do not produc
change, the T interferometer remains balanced and the ta
qubits exit in the same spatial modes in which they enter
On the other hand, if the control photon is in modecV then
there is a two-photon component in the C interferometer t
suffers a sign change due to the NS gates. This leads
sign change in one arm of the T interferometer and the ta
qubit exits from the opposite mode from which it entered
n

FIG. 4. Schematic of simplifiedCNOT gate.

Gray indicates the surface from which a sig
change occurs upon reflection.
4-3
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Let us consider the systems operation in more detai
the control is in a logical 0 then the modecV will be in a
vacuum state. Consider the line labeledx in Fig. 3 lying just
before the NS gates. The state of the system at this poi
given by

uc&x5
1

A2
u1001&6

1

2
~ u1100&2u1010&), ~9!

where the left to right ordering is equivalent to the top
bottom ordering in Fig. 3. The1 occurs when the targe
input state isuH&, the2 occurs when the target input state
uV&. Now consider the state of the system directly after
NS gates operate on the middle two modes~indicated by the
line y in Fig. 3!. Substituting from Eq.~1! we find uc&y
50.25uc&x . That is the gates do not effect the states in
arms of the C interferometer~conditional on the detection o
photons at the ‘‘1’’ ports of the NS gates!. As both interfer-
ometers are balanced they will just return the same out
as they had inputs. ThuscVo will be a vacuum mode, and i
the target input photon was intH , it will emerge intHo ; or if
it was in tV , it will emerge intVo . In other words, the con
trol and target qubits will remain in the same states.

On the other hand, if the control is in a logical 1, then t
cV mode will contain one photon. The state atx is now

uc&x5
1

2
@ u0101&1u0011&6~ u0200&2u0020&)]. ~10!

The two-photon amplitudes suffer sign changes~conditional
on the detection of photons at the ‘‘1’’ ports of the NS gate!
such that the state aty, after the NS gates, is now

uc&y50.25H 1

2
@ u0101&1u0011&7~ u0200&2u0020&)].

~11!

This leads to a sign change in the returning beam of th
interferometer that in turn results in a swap between the
puts and outputs of the T interferometer. Thus if the tar
input photon was intH it will emerge intVo or if it was in tV
it will emerge in tHo . The control outputcVo also suffers a
sign change, but this does not change its logical status
other words, the control is unchanged but the target q
will change states.

The truth table of the device is thus

uH&cuH& t→uH&cuH& t , uH&cuV& t→uH&cuV& t ,

uV&cuH& t→uV&cuV& t , uV&cuV& t→uV&cuH& t , ~12!

which is CNOT logic.
It is useful to also look at this arrangement in the Heis

berg picture. Referring again to Fig. 3 our input modes
cH and cV for the control,tH and tV for the target, and the
ancilla modesa1 , a2 , v1, and v2. The initial state of
ci , t j , a1 , a2 is u1,1,1,1& where i , j 5H or V. The other
modes are initially in the vacuum stateu0,0,0,0&. We propa-
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gate these modes through the system and obtain the fol
ing expressions for the output modes:

cHo5cH , cVo5
1

A2
~d181d28!,

tHo5
1

A2
~ t91t-!, tVo5

1

A2
~ t92t-!,

a1o5Ah3a191A12h3v18 , a2o5Ah3a291A12h3v28 ,
~13!

where

t95
1

A2
~d182d28!, t-5

1

A2
~ tH2tV!,

t85
1

A2
~ tH1tV!, a195Ah2a181A12h2d1 ,

a295Ah2a281A12h2d2 , a185Ah1a11A12h1v1 ,

a285Ah1a21A12h1v2 , v185A12h1a12Ah1v1 ,

v285A12h1a22Ah1v2 , d185A12h2a182Ah2d1 ,

d285A12h2a282Ah2d2 , d15
1

A2
~cV1t8!,

d25
1

A2
~cV2t8!. ~14!

The logical statements of Eq.~12! can then be realized
through measurements of fourfold coincidences. Thus if
initial state isuH&cuH& t then we find

^cHo
† cHo tHo

† tHo a1o
† a1o a2o

† a2o&5
1

16
,

^cHo
† cHo tVo

† tVo a1o
† a1o a2o

† a2o&50,

^cVo
† cVo tVo

† tVo a1o
† a1o a2o

† a2o&50,

^cVo
† cVo tHo

† tHo a1o
† a1o a2o

† a2o&50, ~15!

and similarly for the initial stateuH&cuV& t we find

^cHo
† cHo tVo

† tVo a1o
† a1o a2o

† a2o&5
1

16
~16!

with all other moments zero. However, for initial state t
uV&cuH& t we find
4-4
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SIMPLE SCHEME FOR EFFICIENT LINEAR OPTICS . . . PHYSICAL REVIEW A 65 012314
^cVo
† cVo tVo

† tVo a1o
† a1o a2o

† a2o&5
1

16
~17!

with the other moments zero and for the initial stateuV&cuV& t
we find

^cVo
† cVo tHo

† tHo a1o
† a1o a2o

† a2o&5
1

16
~18!

with the other moments zero. As expected the factor 1
appears as we have employed two NS gates each of w
works on average 25% of the time. It can also be verified t
injection of the control qubit in the superposition stat
(1/A2)(uH&6uV&) with the target inuH& or uV& produces
correlations corresponding to the four entangled Bell sta
as expected from quantumCNOT operation.

V. SIMPLIFIED GATE OPERATION

A major experimental advantage to this setup, as co
pared to the test circuit suggested in Ref.@2#, is that we can
work in the coincidence basis. This allows low-efficien
detectors and spontaneous single-photon sources to be
to demonstrate the basic operation of the gate. Of cou
incorporating these gates in a scalable system as discuss
Sec. II requires one to know that the gate has success
operated without destroying the output. It is straightforwa
to show from Eqs.~13! that detection of one and only on
photon in modesa1o anda2o and no photons in modesv1o
and v2o is sufficient to ensure successful operation of
gate without disturbing the control and target outputs. Ho
ever low-loss, zero-, one-, two-photon discriminating det
tion would be needed to operate in this way.

Even in the coincidence basis the above implementa
represents a major technological challenge. Four nested
terferometers must simultaneously be mode matched
locked to subwavelength accuracy over the operation tim
the gate. A major simplification is achieved by operating
NS gates in a biased mode. The idea is to set the reflectiv
h1 andh3 in the NS gates to one, i.e., totally reflective. Th
removes the interferometers from both the NS gates, gre
reducing the complexity of the gate. Summing over the pa
as before we find that the NS operation becomes

uc&5au0&1bu1&1gu2&→uc8&5Ah2au0&1~122h2!bu1&

2Ah2~223h2!gu2& ~19!

when h15h351. There is no solution such that the ‘‘0,
‘‘1,’’ and ‘‘2’’ components scale equally, so the gate is b
ased. However, this problem can be solved by placing
additional beam splitter in the beam path with a vacu
input and conditioning on no photons appearing at its outp
Now we find

uc8&5Ah2au0&1Ah7~122h2!bu1&

2h7Ah2~223h2!gu2&, ~20!
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where h7 is the reflectivity of the additional beamsplitte
Remarkably the additional degree of freedom allows the g
to be rebalanced such that exact NS operation is achie
without an interferometric element. The trade off is a sm
reduction in the probability of success. Solving we findh2

5(32A2)/7 andh75523A2 gives NS operation with a
success probability ofh2'0.23.

There is considerable flexibility in how the simplified ga
is employed in theCNOT operation. One of a number o
possible scenarios is shown in Fig. 4. The NS gates of Fi
have been replaced by the beamsplittersB5 andB6 that have
reflectivities h2. Additional beam splitters,B7 and B8, of
reflectivitiesh7 have been inserted in beamscV and t8 re-
spectively. The state of the system at pointz in Fig. 4 ~con-
ditional on a single photon being detected at outputsa1o and
a2o and no photons appearing at outputsv7o and v8o) is
given by

uc&y5
1

A2
h2u1001&6Ah2h7~122h2!

1

2
~ u1100&2u1010&)

~21!

if the control is initially in uH& and

uc&y5
1

2
$Ah2h7~122h2!~ u0101&1u0011&)

7@h7h2~223h2!~ u0200&2u0020&)] % ~22!

if the control is initially in uV&. Choosing as beforeh25(3
2A2)/7 andh75523A2 we obtainCNOT operation with a
probabilityh2

2'0.05. The operation of the gate can also s
be described by Eq.~13! but with h15h351 and the sub-
stitutions

cV5
Ah7

A2
cV81A12h7v8 ,

t85
Ah7

A2
~ tH1tV!1A12h7v7 , ~23!

where nowcV8 is the initial state of the control’s vertica
polarization mode. All the conditional moments of Eq
~14!–~17! are reproduced but with the probabilities of th
nonzero moments reduced from 1/16 to approximately 1/
All other properties of the original gate are retained.

VI. CONCLUSION

The efficient linear-optics computation scheme of Ref.@2#
appears exciting in principle but daunting in practice. Ho
ever, we have shown that by adopting aCNOT test architec-
ture the basic principles of the scheme can be tested
present technology. Four-photon experiments with sponta
ous sources are difficult, but have been achieved@10#. Basi-
cally such experiments utilize events where by chance
4-5
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down converters simultaneously produce pairs. The us
our simplified scheme would reduce the stability issues
such an experiment significantly with only a small decre
in probability of success. Calculations using Eq.~13! show
that operation is not critically dependent on experimen
parameters. For example 2% errors in beam-splitter ra
only lead to fractions of a percent errors in gate operatio

In the longer term the greater simplicity of our gate
.
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likely to play a significant role in scalable architectures wh
the required single-photon sources and detectors bec
available.
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