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Measuring Entangled Qutrits and Their Use for Quantum Bit Commitment
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We produce and holographically measure entangled qudits encoded in transverse spatial modes of
single photons. With the novel use of a quantum state tomography method that only requires two-state
superpositions, we achieve the most complete characterization of entangled qutrits to date. Ideally,
entangled qutrits provide better security than qubits in quantum bit commitment: we model the
sensitivity of this to mixture and show experimentally and theoretically that qutrits with even a small
amount of decoherence cannot offer increased security over qubits.
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Many two-level quantum systems, or gubits, have been
used to encode information [1]; using d-level systems, or
qudits, enables access to larger Hilbert spaces, which can
provide significant improvements over qubits such as in-
creased channel capacity in quantum communication [2].
When entangled, gutrits (d = 3) provide the best known
levels of security in quantum bit commitment and coin-
flipping protocols, which cannot be matched using qubit-
based systems [3]. The ability to completely characterize
entangled qudits is critical for applications. This is only
possible using quantum state tomography [4,5].

Entangled qudits have been realized in few physical
systems, and only indirect measurements have been made
of the quantum states of these systems. Qutrit entangle-
ment has been generated between the arrival times of
correlated photon pairs, where fringe measurements
were used to infer features such as fidelities with specific
entangled states and to estimate a potential Bell violation
[6]. It is also possible to encode qudits in the transverse
spatial modes of a photon, Fig. 1. There have been mea-
surements demonstrating, but again not quantifying, spa-
tial mode entanglement in parametric down-conversion
[7], including fringe measurements [8,9] and the violation
of a two-qutrit Bell inequality [10,11].

Here, we use quantum state tomography to completely
characterize entangled, photonic qudits (both d = 2 and
3) encoded in transverse spatial modes, measuring the
amount of entanglement and the degree of mixture. We
show how to use the qutrit system in a quantum bit-
commitment protocol and investigate the experimental
requirements for achieving the best known security [3].
To illustrate these results, we first introduce and demon-
strate two conceptually distinct ways of encoding infor-
mation in transverse spatial modes, which differ in the
behavior of superposition states. This work constitutes the
most complete characterization of spatially encoded qu-
bits and qutrits and the first quantitative measurement of
entangled qutrit states.

The Gaussian spatial modes are a complete basis for
describing the paraxial propagation of light [13]. Two
orthonormal mode families are shown in Fig. 1(a): the
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Hermite-Gauss (HG,;) and the Laguerre-Gauss-Vortex
(LGV ). These modes are self-similar under propaga-
tion; modes of the same order experience the same propa-
gation-dependent phase shift, the Gouy phase shift. We
define degenerate qudits to be constructed from basis
states of the same order [Fig. 1(b)]. Conversely, nonde-
generate qudits contain states of different orders
[Fig. 1(c)]; the different Gouy phases cause nondegenerate
qudit superpositions to change phase as they propagate.
When encoding in photon polarization, the quantum
state is manipulated with wave plates and selected using a
polarizing beam splitter [14]. In spatial encoding, the
wave plate function is achieved with a hologram, and
the beam splitter with a single-mode fiber (SMF), which
selects the lowest order spatial component (HGgy, =
LGVy, = G) and interferometrically rejects all higher-
order modes. A spatial mode analyzer (SMA) combines
these two components with a detector. The hologram first
converts the target mode into the mode G, which is then
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FIG. 1. (a) The first three orders of two paraxial mode
families: the Hermite-Gauss modes (HG,,), with r horizontal
and s vertical lines of phase discontinuity; the Laguerre-Gauss-
Vortex modes (LGV ,;), with p ring phase discontinuities and a
charge [ phase singularity, or vortex. The mode order is r + s
for HG,, modes and 2p + [ for LGV ,; modes. Superposition
states for (b) degenerate and (c) nondegenerate qubits, where
the logical modes are, respectively, of the same and different
orders. The displaced singularity in the nondegenerate qubit
moves around the beam center as it propagates.
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selected by the fiber, Fig. 2(a). All other modes are
rejected, Fig. 2(b), with typical extinctions of ~1073—
equivalent to standard commercial polarizing beam split-
ters. We use different holograms to measure different
states, as described below.

Quantum state tomography requires a series of com-
plementary measurements on a large ensemble of identi-
cally prepared copies of the system [4]. Rather than
measure d-part superpositions [5], we choose a set of
measurements constructed from only basis states, |j),
and two-state superpositions, |p*) and |g"), where
Ip=) = () £ 1k)/V2,1g™) = (Ij) = ilk)/v2,and j, k €
{0, 1, ..., d — 1} [15]. In practice, we use an overcomplete
set including |p~) and |¢~), which allows more accurate
normalization when converting the data to measurement
probabilities. We obtain a physical density matrix using an
optimization procedure [4]; the overspecification also
makes this optimization less sensitive to outlying data
points. Using this two-state tomographic technique, we
characterize the output from a type-I down-conversion
source pumped by a blue diode laser [Fig. 2(c)]. The two
SMAs image partial, banana-shaped sections of the cone
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FIG. 2 (color online). Quantum state tomography of spatial
modes. A spatial mode analyser (SMA) realized with a
LGV, 4, hologram: (a) the target mode (LGV( ;) couples
into a single-mode fiber (SMF); (b) other modes (e.g.,
LGV) are rejected. The images are labeled with the charge
of the phase singularity in the beam. (c) Conceptual layout for
tomography. Two SMAs analyze the mode of the energy degen-
erate pairs (820 = 10 nm), postselected by counting in coinci-
dence for 100 s with fiber-coupled avalanche photodiodes
( ~ 100 counts/s). (d) The 8-segment analysis hologram [29]
used in all our experiments: the labels (G, R, etc.) correspond to
the main spatial mode analyzed by that segment. The positions
(i)—(iii) for (d) degenerate and (iv)—(vi) for (e) nondegenerate
qubits correspond, respectively, to measuring one computa-
tional basis state and the two equal superposition states, (|0) +

il1))/+/2 and (|0) + |1))//2.
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of energy degenerate photon pairs and so see significant
contributions from spatial components other than G.

The simplest degenerate qubit encoding has first order
logical basis states, e.g., HG;o = 0, HGy; = 1. The cor-
responding physical measurements required for tomog-
raphy are then the states described by Padgett et al [16]:
the HGy;-type modes with horizontal (H), vertical (V),
diagonal (D), and antidiagonal (A) phase discontinuities,
and the LGV +| modes with charge =1 phase singular-
ities (right, R, and left, L). These states are measured
using six different plane-wave hologram segments as
shown in Fig. 2(d) [17]. To test the performance of the
SMA, we holographically created and measured a range
of single qubit states using a coherent source (10 mW
HeNe laser). In all cases, we obtained extremely high
purities ( > 0.999) and fidelities with their ideal counter-
part ( > 0.98). Figure 3(a) shows the two-photon state of
the down-converter measured in the qubit basis: the state
is highly entangled, the fidelity with the maximally en-
tangled ¢ Bell state is F,+ = 0.97. The degree of en-
tanglement and mixture of the measured state is
quantified, respectively, by the tangle, T = 0.90, and
linear entropy, S; = 0.06 [14].

The simplest nondegenerate qubit encoding has zero
(G = 0) and first order (e.g., R or L = 1) basis states. The
basis states are measured with the appropriate hologram
segments, and the superposition states are simply ac-
cessed by displacing the R or L singularity a distance
w/ V2 from the center of the beam, Fig. 2(e), where w is
the intensity 1/e? point [18,19]. The analyzer quality is

FIG. 3 (color online). Measured density matrices (real parts)
for (a) entangled degenerate qubits (H =0, V = 1); (b) en-
tangled nondegenerate qubits, (G=0,L =1inarm 1; G =0,
R=1 in arm 2); and (c) entangled nondegenerate qutrits,
(L=0, G=1, R=2), where every second row is labeled.
For all three cases, imaginary components were <<0.03.
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equivalent to the degenerate case. The measured non-
degenerate, two-qubit state [Fig. 3(b), T = 0.65 and S; =
0.11] has a lower tangle, reflecting the larger component
of G in the down-conversion beam. This state has a high
fidelity, F = 0.95, with a nonmaximally entangled state
[21] of the form (|GG) + €|LR))/~/1 + €% for £ = 0.60.
The results for both types of qubit indicate that a Bell
inequality could be violated [12].

We now encode a nondegenerate qutrit using basis
states from the lowest two mode orders [10]: L =0, G =
1, and R = 2. Our two-state tomographic technique en-
abled us to use the hologram in Figs. 2(d) and 2(e); the
resulting measured two-qutrit state is shown in Fig. 3(c).
This state is quite pure, with linear entropy S; = 0.18,
and highly entangled. There are several ways to quantify
the entanglement of this state. Given the relative popula-
tions of the basis states, we expect a nonmaximally
entangled state of the form, (|LR)+ &|GG)+
|RL))/\/2 + |&|?; for & = 1.79¢ %977 found using nu-
merical optimization, the fidelity between the ideal and
measured nonmaximally entangled states is F = (.88.
More directly, we calculate an upper bound to the mea-
sured entanglement of formation of 0.74 [22,23].

One advantage that entangled qutrits offer over qubits
is increased security in cryptographic protocols such as
quantum bit commitment (BC) and coin flipping.
Quantum BC binds a sender (Alice) to one message (a
bit) and prevents the receiver (Bob) from determining the
message before Alice later chooses to reveal it. BC is the
basis for the most secure known strong quantum coin-
flipping protocols [3]. While BC protocols with uncondi-
tional security are impossible [26,27], they can be
partially secure [3]. The best known BC protocols are
purification protocols, where Alice supplies the only
quantum system, which consists of two parts. She sends
the token subsystem to Bob to commit her bit and the
proof subsystem later to reveal it. Maximum security in
such protocols can be achieved by using two entangled
qutrits for the token and proof, but not qubits.

We now outline one procedure for using our entangled
qutrit state analyzed above to implement a purification
BC protocol. Depending on her choice of bit, Alice should
prepare two qutrits in one of the orthogonal states |0); =
VAI12) + e /1 = Al01)  or |1), = €'%/1 — A|21) +
VA|10), where A is a parameter characterizing the secur-
ity of the protocol. To prepare such states using our
system, Alice needs to postselect the entangled states
that have no photons in one of the basis modes of one
subsystem: e.g., consider the proof subsystem in arm 1:
zero photons in the “2” basis mode yield |0);; zero
photons in the “0” mode yield |1); . In principle, manipu-
lating the individual modes of the proof subsystem can be
accomplished using a holographic interferometer in that
arm. Postselection would then require either perfect de-
tectors or spatial-mode quantum nondemolition (QND)
measurements. Here, however, we simulate this process
and reconstruct the new states [28]. The logical states are

053601-3

then created by swapping the remaining proof subsystem
modes. Figures 4(a) and 4(b) show the two-qutrit logical
states that result from this simulated state preparation
step. In this simulation, the only imperfections in the
protocol arise from the initial state, thus giving a bound
for the usefulness of our entangled qutrits.

After preparing the appropriate state, Alice then sends
the token qutrit to Bob. Because of the entanglement
(quantified by A), the reduced token state possessed by
Bob is mixed, which lies at the heart of the security of the
purification protocol. The fact that orthogonal two-qutrit
logical states produce nonorthogonal token states pro-
vides some security against Bob cheating. His maximum
knowledge gain, K, is limited by the distinguishability of
these states and quantified by the trace distance. However,
it is this partial distinguishability which in turn limits
Alice’s ability to cheat and change her bit after her
commitment. Her maximum control, C, can be quantified
by the fidelity between the token states. Details can be
found in Ref. [3]. The protocol is concluded by Alice
sending the proof qutrit to Bob, who performs the
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FIG. 4 (color online). A purification bit-commitment (BC)
protocol. The logical bits generated by Alice as described in the
text: (a) |0);; (b) [1),.. Insets: Bob’s reduced density matrices
the token subsystems. (c) Plot of Alice’s control vs Bob’s
knowledge gain. O: the measured protocol; <: the closest ideal
protocol. W and X: the best known qutrit and qubit protocols.
Y and Z: imperfect purification protocols with token states of
the form, po; = p/31 + (1 — p)p§k®, where Y is A = 0.5 and
Z is A = 0.27. The positions for p = 0.09, 0.19, and 0.29 are
marked with X (Y) and + (Z).
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orthogonal, two-qutrit projective measurement, and
either decodes the bit {|0),(0|, [1),{1|} or catches Alice
cheating.

Figure 4(c) shows a plot of C vs K, where the bottom
left corner represents unconditional security and the top
right corner represents no security. The ideal token states
for this scheme give K = A/2 and C = (1 — A)/2, and
varying A produces the best known security curve (W).
The shaded region between W and X highlights the area
inaccessible to qubit-based, but accessible to qutrit-based
BC protocols. The insets to Figs. 4(a) and 4(b) show the
reduced density matrices for the token resulting from our
initial state. They are closest to ideal states with A = 0.27
(F ~ 0.99). However, in spite of this high fidelity, if we
determine C and K directly from the measured token
states, the protocol lies just inside the area accessible to
qubits: a direct result of the slight ( < 3%) residual popu-
lation in the other mode of Bob’s token subsystems,
originating from the defects of Alice’s original state. In
other words, a two-qutrit state with residual populations
of <1% is required to surpass the qubit boundary (X).

To implement this BC protocol, Alice must be able to
perform deterministic postselection (e.g., using QND
measurements). This is hard. Even if she achieves this
perfectly, we have shown that the protocol still lies in the
qubit-accessible regime. In our simulation, the only dif-
ferences between our protocol and the ideal resulted from
imperfections in the initial state. This result demonstrates
that the requirements on the initial two-qutrit entangled
state are extremely stringent, and that future theoretical
work in this area should consider the critical role of even
small amounts of mixture.

We have performed the first full characterization of
entangled, spatially encoded quantum states and achieved
the first complete measurement of an entangled, two-
qutrit state in any encoding, using a novel quantum
tomography technique that requires only two-state super-
positions. We have outlined a scheme for using this system
to implement the best known BC protocol. With this
measured state, this protocol would not reach maximal
security, but we can see from the results what improve-
ments are required. This analysis would have been im-
possible without access to the complete two-qutrit state,
gained through quantum tomography.
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