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Towards quantum chemistry on a quantum computer
B. P. Lanyon1,2*, J. D. Whitfield4, G. G. Gillett1,2, M. E. Goggin1,5, M. P. Almeida1,2, I. Kassal4,

J. D. Biamonte4†, M. Mohseni4†, B. J. Powell1,3, M. Barbieri1,2†, A. Aspuru-Guzik4* and A. G. White1,2

Exact first-principles calculations of molecular properties are currently intractable because their computational cost grows
exponentially with both the number of atoms and basis set size. A solution is to move to a radically different model of
computing by building a quantum computer, which is a device that uses quantum systems themselves to store and process
data. Here we report the application of the latest photonic quantum computer technology to calculate properties of the
smallest molecular system: the hydrogen molecule in a minimal basis. We calculate the complete energy spectrum to 20
bits of precision and discuss how the technique can be expanded to solve large-scale chemical problems that lie beyond
the reach of modern supercomputers. These results represent an early practical step toward a powerful tool with a broad
range of quantum-chemical applications.

O
ne of the most important and difficult problems in science is
the accurate calculation of material properties from first
principles. Indeed, this can be viewed as the central challenge

for theorists from an enormous range of fields, including chemistry,
condensed matter physics, materials science, biophysics and bio-
chemistry. The challenge of first-principles calculations arises
because the computational resources required to obtain exact
(that is, full configuration interaction) solutions of the
Schrödinger equation on a conventional computer generally
increase exponentially with the number of atoms involved1,2. This
renders such calculations intractable for all but the smallest
systems, even using the latest supercomputers.

In chemistry, the most important task is to calculate the energy of
molecules to within chemical accuracy (kbT �1 kJ mol21), which is
required to predict reaction rates. The difficulty of solving this
problem exactly has led to the development of several approximate
methods for first-principles quantum chemistry3. Tremendous
methodological progress and the growth of the power of classical
computers have allowed for spectacular computational successes,
such as density functional theory (DFT) calculations of entire pro-
teins or nanostructures4,5. Nevertheless, there are numerous impor-
tant instances where approximate methods fail. For example, DFT is
unreliable for systems involving excited-state charge transfer6, conical
intersections7 (which are important in green fluorescent protein and
rhodopsin) or strong electronic correlations (such as those in high-
temperature superconductors8). Although some of these effects are
captured by post-Hartree-Fock wavefunction methods, there are
weaknesses associated with these methods as well. For example,
coupled cluster methods fail for bond dissociation9.

In 1982, Richard Feynman1 suggested that an avenue for the
tractable simulation of quantum systems would be to build
quantum mechanical simulators. The most versatile quantum simu-
lator is a universal quantum computer—a device that uses quantum
systems themselves to store and process data. It has been proposed
that a quantum computer can simulate many-body physical
quantum systems (such as molecules) and calculate their energies
to a fixed accuracy with a number of quantum computational

resources that increases only polynomially with the number of par-
ticles2,10–12. Such a device would provide an extremely powerful tool
for new science and technology because essentially exact (within a
specified basis) molecular properties would be available13.

Here, we demonstrate a proposed quantum algorithm for
quantum chemical calculations in a linear optic quantum comput-
ing architecture for the smallest problem: obtaining the energies of
the hydrogen molecule (H2) in a minimal basis. We perform a key
algorithmic step—the iterative phase estimation algorithm14–17—in
full, achieving a high level of precision and robustness to error.
We implement other algorithmic steps with assistance from a clas-
sical computer and explain how this non-scalable approach could be
avoided, given more quantum computational resources than are
currently available. Finally, we provide new theoretical results,
which lay the foundations for the next generation of simulation
experiments using quantum computers. Pioneering experiments
in the context of quantum simulation with quantum systems were
first performed using NMR-based systems to simulate quantum
oscillators18, leading up to recent simulations of a pairing
Hamiltonian16,19. The phase transitions of a two-spin quantum
magnet20 and the Dirac equation21 have been simulated using ion-
trap systems. Here we take this work further by both simulating a
many-body quantum system and calculating its energy.

The fundamental concept of quantum computation is the
quantum bit, or qubit—a two level quantum system that is analogous
to the classical bit. Quantum computing requires the ability to prepare
a large number of qubits into some initial state, manipulate the state
in an arbitrary way (for example, using quantum logic gates) and read
out the final state, much like the requirements of classical computing.
A key difference between classical and quantum computing is that
whereas the state of a bit can be either 0 or 1 at any given time, a
qubit can exist in any arbitrary superposition state aj0lþ bj1l
(where the Dirac notation has been used and a and b are complex
numbers such that jaj2þ jbj2¼ 1). The ability of qubits to exist in
superposition states is a precursor to a uniquely quantum mechanical
phenomenon called entanglement: multiple qubits can exist in a
superposition of their joint states that cannot be written as a
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product of states of the individual systems—the individuals have no
well-defined state on their own but their joint state can be perfectly
defined, hence they are ‘entangled’. It has been shown that, for the
conventional model of quantum computing, the ability for a
quantum computer to exploit these correlations is a necessary con-
dition for any computational advantage22.

Key challenges in building a quantum computer are to isolate
qubits in physical systems, prepare arbitrary states, implement arbi-
trary qubit evolution, read out qubit states, overcome noise and to
do all this on a large scale; that is, with a large number of qubits.
Today there is a large ongoing international effort to build a
quantum computer in a wide range of different physical systems.
Significant progress has been made with ionic23,24, photonic25,
superconducting26 and solid state27 systems, for example.
Alongside ionic methods, photonic approaches represent one of
the most mature experimental quantum computing architectures.
Not only does this approach offer a legitimate path to building a
large-scale quantum computer28,29, but it also provides a test bed
in which to explore the next steps in experimental quantum com-
puting. Today, the available photonic quantum computer technol-
ogy is reaching the stage where the first small-scale quantum
algorithms can be explored30,31.

Results
Molecular energies are represented as the eigenvalues of an associ-
ated time-independent Hamiltonian Ĥ and can be efficiently
obtained to fixed accuracy using a quantum algorithm with three
distinct steps15: encoding a molecular wavefunction into qubits;
simulating its time evolution using quantum logic gates; and extract-
ing the approximate energy using the phase estimation algor-
ithm15,32. The latter is a general-purpose quantum algorithm for
evaluating the eigenvalues of arbitrary Hermitian or unitary
operators. The algorithm estimates the phase, f, accumulated by a
molecular eigenstate, jcl, under the action of the time-evolution
operator, Û ¼ e�ði Ĥt=�hÞ; that is,

e�ðiĤt=�hÞjcl ¼ e�ðiEt=�hÞjcl ¼ e�i2pfjcl ð1Þ

where E is the energy eigenvalue of jcl. Therefore, estimating the
phase for each eigenstate amounts to estimating the eigenvalues of
the Hamiltonian.

We implement the iterative phase estimation algorithm15,33

(IPEA), which minimizes the number of qubits and quantum
logic gates required. Figure 1a shows the IPEA at iteration k. Key
algorithmic features are the encoding of an eigenstate wave function
into an n–qubit register and the implementation of powers of the
time evolution operator Û on this register conditional on the state
of the upper single qubit, as in Fig. 1a. By conditional we mean
that if the top qubit is in the logical 1 (0) state then this evolution
does (does not) occur; that is, j1;cl! Û

pj1;cl and
j0;cl! j0;cl, where p¼ 2k21.

At the end of the kth iteration, a measurement of the logical state
of the top qubit is performed, yielding the result 0 or 1. This rep-
resents an estimate of the kth bit of the binary expansion34 of f.
As each iteration provides one bit, the total number of iterations
(m) determines the precision with which the phase is estimated.
An important feature is that least significant bits are estimated
first (that is, k is iterated backwards from m to 1) and measured
bits are used to improve the estimation of more significant bits.
This information transfer between iterations is achieved via a
single qubit rotation R̂z(vk) on the upper qubit, whose angle is
determined by all previously measured bits, as described in the
caption of Fig. 1a. A detailed explanation of the IPEA can be
found in ref. 33, but it is useful to consider the following: the
IPEA allows the phase f to be determined by letting the wave func-
tion evolve in time and then (iteratively) performing a Fourier

transform to obtain the frequency of the phase oscillation.
Consequently, to obtain higher precision in the frequency
domain, the wave function must be propagated longer in the time
domain; that is, higher powers of Û enable more precision in the
phase estimation.

In the case where the phase to be calculated has an exact expan-
sion to m bits, a perfect implementation of m iterations of the algor-
ithm (that is, without experimental error) will deterministically
extract the exact phase. This is not generally the case and this
leads to a non-zero probability of intrinsic algorithmic error: let m
bits of a binary expansion of f be ~f ¼ 0:f1f2 . . .fm, such that
f ¼ ~fþ d2�m where d is a remainder 0� d , 1. A perfect
implementation of the algorithm achieves a precision of +22m

with error probability33 1 � 1� ð8=p2Þ � 0:19, which is indepen-
dent of m (the bound is saturated for d¼ 0.5).

In the case of perfect algorithm implementation, this error can
always be eliminated by simply repeating each IPEA iteration mul-
tiple (n) times, yielding n possible values for the corresponding bit.
A majority vote is then performed by selecting the mode of the set of
these samples—that is, choosing the result that is observed most
often (see Methods). This technique only requires repeating the
algorithm a fixed number of times, which does not affect its
overall efficiency.

We take the standard approach to quantum-chemical calcu-
lations by solving an approximate Hamiltonian created by using
the Born-Oppenheimer approximation (where the electronic
Hamiltonian is parameterized by the nuclear configuration) and
choosing a suitable truncated basis set in which to describe the
non-relativistic electronic system. Typical sets consist of a finite
number of single-electron atomic orbitals, which are combined to
form antisymmetric multi-electron molecular states (configur-
ations)35. Calculating the eigenvalues of the electronic
Hamiltonian using all configurations gives the exact energy in the
basis set and is referred to as full configuration interaction (FCI).
For N orbitals and m electrons there are

N
m

� �
� Nm

m!

ways to allocate the electrons among the orbitals. This exponential
growth is the handicap of FCI calculations on classical computers.

As described in the Methods section, the Hamiltonian for the H2
molecule in a minimal basis is block diagonalized in the symmetry
adapted basis, with 2� 2 submatrices (Ĥ

ð1;6Þ
and Ĥ

ð3;4Þ
). We map

the configurations spanning each subspace to the qubit compu-
tational basis. As the subspaces are two-dimensional, one qubit
suffices to represent the wavefunction. The corresponding time-
evolution operators Û

ðp;qÞ ¼ e�iðĤðp;qÞt= �hÞ, where ( p,q)¼ (1,6) or
(3,4), are therefore one-qubit operators. Finding the eigenvalues of
each separately, using a phase estimation algorithm, amounts to
performing FCI. For the purpose of our demonstration we encode
exact eigenstates, obtained via a preliminary calculation on a classi-
cal computer. In the Supplementary Information we show that the
algorithm is in fact robust to imperfect eigenstate encoding.

Overview of experiment
We implement the IPEA in a photonic architecture, encoding qubits
into the polarization of single photons generated in pairs through
the process of spontaneous parametric downconversion. An exper-
imental schematic is shown in Fig. 1c. In our encoding, the logical
state j0l (j1l) corresponds to the horizontal, jHl (vertical, jVl) polar-
ization. Single qubit gates can be easily implemented using birefrin-
gant wave plates to perform arbitrary polarization rotations.
Multi-qubit gates are possible by combining linear optic elements
(phase shifters and beam splitters) with projective measurement,
as originally proposed in 2001 and demonstrated in 200325,28. Such
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gates are high quality, well characterized and have several in-principle
paths to scalable optical quantum computing29. The key device in our
experiment is a photonic two-qubit controlled-unitary quantum logic
gate, recently developed in our laboratory31. This device exploits
multiple photonic degrees of freedom to extend the range of possible
operations. We note that our implementation of the IPEA is the first,
in any physical system, to use quantum logic gates that can generate
the non-classical correlations required for efficient quantum comput-
ing. We acknowledge a previous implementation in a liquid-state
ensemble NMR architecture36, which is arguably an in-principle
non-scalable approach37. Another implementation in ions38 was
semi-classical in the sense that it combined single-qubit measure-
ment and feedback in place of entangling gates. We now provide a
simple conceptual explanation of our experimental method.

Each iteration of our IPEA implementation requires two qubits,
and therefore two photons, to be injected into the optical circuit
shown in Fig. 1c; one in each optical input mode. We call these
photons the ‘control’ and ‘register’, after the qubits that they
encode (Fig. 1a). Each optical mode then passes through a polariz-
ing beam splitter set to prepare (transmit) the fiducial initial state
jHl. The required IPEA input states are then prepared using wave
plates: the register polarization is rotated into a state that represents
(encodes) an eigenstate of our molecular Hamiltonian (Ĥði;jÞ)
and the control photon is rotated into the equal superposition
state ðjHlþjVlÞ=

ffiffiffi
2
p

. Both modes then pass through an optical
network that implements a controlled-Û2k�1

gate: if the control
is horizontally polarized then nothing is changed (the mathematical

‘identity’ operation is implemented); if the control is vertically
polarized then the operation Û2k�1

is implemented on the register
polarization—that is, the evolution of the register polarization
state is equivalent to (simulates) the evolution of a molecular eigen-
state due to the molecular Hamiltonian, for a specific time interval.
In this case, the joint polarization state will pick up a phase deter-
mined by k and the energy of the encoded eigenstate. Note that
this nonlinear process (that is, conditional dynamics at the single
photon level) occurs only if a single photon exits each port, hence
the circuit is non-deterministic (we note that this can be overcome
and efficient scalable linear optical quantum computing is
possible28,39). Finally, the control polarization is measured in the
H/V basis, yielding the result H (0) or V (1). This result is the esti-
mate for one bit of the binary expansion of the phase. This same
circuit (one iteration of the IPEA) is repeated with many photon
pairs and a majority vote is used to determine the estimated
bit value.

The circuit is changed in two ways for the next iteration: the mol-
ecule is simulated for a different time period (that is, k is changed) and
previous results are fed back (the R̂zðvkÞ gate is set to an angle deter-
mined by all previously measured bits, see Fig. 1). Both changes are
implemented by changing the settings of wave plates.

To resolve energy differences relevant to chemical processes,
absolute molecular energies must be computed to an accuracy
greater than kbT� 1 kJ mol21. Furthermore, because we choose to
encode the molecular Hamiltonian in atomic units, the phase f is
read out in hartrees, 1 Eh¼ 2,625.5 kJ mol21. Therefore, to achieve
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Figure 1 | The quantum algorithm for calculating energies of many-body quantum systems and our experimental implementation with linear optics. a, The

iterative phase estimation algorithm15,33 at iteration k represented using quantum circuit notation34. To produce an m–bit approximation to the phase of the

eigenstate, f (see Eqn 1), the algorithm is iterated m times. Each iteration obtains one bit of f(fk); starting from the least significant (fm), k is iterated

backwards from m to 1. The angle vk depends on all previously measured bits as vk¼22pb, where b, in the binary expansion of f, is b¼0.0fkþ1fkþ2 . . . fm

and vm¼0. H is the standard Hadamard gate34. b, Quantum circuit model representation of our gate network for a two-qubit-controlled Û
j

gate, as discussed

in the Methods section. c, Two-qubit optical implementation of the IPEA. Photon pairs are generated by spontaneous parametric down-conversion (SPDC),

coupled into a single-mode optical fibre and launched into free space optical modes C (control) and R (register). The operation of the optical-controlled R̂z

gate is described by Lanyon31 et al. Coincident detection events (3.1 ns window) between single photon counting modules (SPCMs) D1 and D3 (D2 and D3)

herald a successful run of the circuit and result in 0 (1) for fk. Waveplates are labelled with their corresponding operations. PPBS: partially polarizing beam

splitter. X is the standard Pauli X gate (0$ 1) and Rn̂ is the rotation of the qubit about the n̂ axis of the Bloch sphere34. l/2 (l/4) is a half (quarter)

wave plate.
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a precision of 1 kJ mol21, the IPEA must be able to resolve the phase
to 14 bits, as (2p� 2214)Eh corresponds to 1.01 kJ mol21. To
demonstrate that the necessary precision can be achieved, we
carried out the IPEA to 20 bits, using n¼ 31 samples per bit.
Figure 2 shows our results: H2 energies calculated over a range of
internuclear separations, reconstructing the potential energy sur-
faces. The ground-state energy obtained at the equilibrium bond
length of 73.48 pm is 2535.58+0.03 kJ mol21, which agrees
exactly with the result obtained on a classical computer to an uncer-
tainty in the least significant bit.

Discussion
Achieving such high precision will become a far more significant
challenge for large-scale implementations. Owing to the small
scale of our demonstration, we are able to implement each power
of Û

ðp;qÞ
directly, by re-encoding the same number of gates (see

Methods). Therefore, the probability of error introduced by gate
imperfections remains a constant for each bit. This is the main
algorithmic feature that allows for the high precision obtained.
However, following current proposals, the circuit network for Û
will not generally have the same form as Û

j
for larger implemen-

tations (detailed in our Supplementary Information). For each
additional digit of precision sought, the gate requirements of
the algorithm are roughly doubled, thereby amplifying any
gate error.

Important next experimental steps are to demonstrate the two
parts of the quantum algorithm that we implemented with assist-
ance from a classical computer. First, encoding even low fidelity
eigenstate approximations into qubits is a highly non-trivial step
for molecules much larger than H2. In many cases this problem
could be overcome using a heuristic adiabatic state preparation
algorithm15,20,40. Here, ground state approximations, for example,
can be efficiently obtained as long as the energy gap between the
ground state and excited states is sufficiently large along the path
of the adiabatic evolution41. Second, directly calculating and decom-
posing the molecular evolution operator into quantum logic gates
does not scale efficiently with molecular size2 and an alternative
scheme must be used. The proposed solution exploits the fact that
the general molecular Hamiltonian is a sum of fixed-sized one-
and two-electron terms that can be efficiently simulated individually
and combined to approximate the global evolution2. We give
an overview of this ‘operator-splitting’ technique in our
Supplementary Information and find that the total number of
elementary quantum gates required to simulate the evolution of
an arbitrary molecule, without error correction, scales as N5,
where N is the number of single-particle basis functions used to
describe the molecular system. In this scheme, N is also the
number of qubits necessary. We also present the quantum logic cir-
cuits required to simulate each term in the general molecular
Hamiltonian—these are the building blocks of a universal
quantum molecular simulator. Finally, we perform an accurate
resource count to reproduce our H2 simulation in this fully
scalable way: four qubits and 522 perfect gates are required to
simulate the full unitary propagator such that the error of the
simulated evolution is within chemical accuracy. We note that
experiments have been performed that involve logic gate operations
on four qubits30. However, implementing 522 sequential one- and
two-qubit quantum logic gates is currently beyond the capabilities
of any quantum computing architecture, and the most immediate
reasons are different in each case. In linear optics a large number
of additional photons would be required, which we are not yet
able to generate in a controlled fashion.

Other major challenges in the path to scalability include those
associated with scaling up the ‘hardware’—that is, achieving more
qubits, gates and longer coherence times. Much progress is being
made on developing the necessary technology for a large-scale

photonic quantum computer42,43. The influence of noise is
perhaps the most serious consideration44 and must be overcome
using error-correction and fault-tolerant constructions17,34. We
note that an alternative promising path to efficient quantum simu-
lators is to exploit controllable quantum systems that can be used to
directly implement model Hamiltonians, thereby potentially avoid-
ing the aforementioned resource-intensive approximation tech-
niques and error correction2,45.
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Figure 2 | Experimental quantum algorithm results. a, H2 potential energy

curves in a minimal basis. Each point was calculated with a 20–bit iterative

phase estimation algorithm, using n¼ 31 samples per bit (repetitions of

each iteration). Measured phases are converted to energies via E¼
2pfEhþ (e2/4p1R) 2 E1; the second term accounts for the proton–proton

Coulomb energy at atomic separation R and E1 is the ground state energy

of two hydrogen atoms at infinite separation. Each case achieved the target

precision of 20 bits corresponding to+(2220� 2p)Eh� 16 J mol21. Curve G

(E3) is the low (high) eigenvalue of Ĥ(1,6). Curve E1 is a triply degenerate

spin-triplet state, corresponding to the lower eigenvalue of and Ĥ(3,4) as well

as the eigenvalues Ĥ(2) and Ĥ(5). Curve E2 is the higher (singlet) eigenvalue

of Ĥ(3,4). b, Curve G rescaled to highlight the bound state. c, Example of raw

data for the ground state energy, obtained at the equilibrium bond length

73.48 pm. The measured binary phase is f¼0.01001011101011100000,

which is equal to the exact value in our minimal basis, to a precision of

+2220 Eh. Note that the exact value has a remainder of d� 0.5 Eh after a

20-bit expansion, hence the low contrast in the measured 20th bit.
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Methods
Our model molecular Hamiltonian. We use the minimal STO-3G basis46 for H2,
consisting of one j1sl–type atomic orbital per atom. These two functions are
combined to form the bonding (antibonding) molecular orbitals47. The four
corresponding single-electron molecular spin-orbitals are combined
antisymmetrically to form the six two-electron configurations, fFig

6
i¼1 that form the

basis for our simulation. Owing to symmetry, the Hamiltonian is block-diagonal in
this basis, with blocks acting on each of the four subspaces spanned by fF1, F6g,
fF2g, fF3, F4g and fF5g (see Supplementary Information for the particular
forms of each configuration). Therefore, finding the eigenvalues of the two 2� 2
submatrices in the Hamiltonian, Ĥð1;6Þ and Ĥð3;4Þ, amounts to performing the FCI.
Estimating the eigenvalues of 2� 2 matrices is the simplest problem for the IPEA.

We use a propagator time step of t ¼ 1ðh�=EhÞ (the hartree, Eh¼

2,625.5 kJ mol21, is the atomic unit of energy), chosen so that 0 � Et=2ph� � 1. For
our proof-of-principle demonstration, all necessary molecular integrals are
evaluated classically (see Supplementary Information) using the Hartree–Fock
procedure47. We use these integrals to calculate the matrix elements of Ĥ and Û ,
then directly decompose each Û ðp;qÞ operator into a logic gate network. We
decompose the Û ðp;qÞ operators into a global phase and a series of rotations of the
one-qubit Hilbert space34:

Û ¼ eiaR̂yðbÞR̂zðgÞR̂yð�bÞ ð2Þ

where a, b, and g, are real angles. Û
j

is achieved by keeping b constant and
replacing angles a and g with ja and jg, respectively. Our decomposition of
the controlled-Û

j
is shown in Fig. 1b.

Details of classical computational methods. Restricted Hartree–Fock calculations
were carried out on a classical computer using the STO-3G basis46. The software
used was the PyQuante quantum chemistry package, version 1.6. The molecular
integrals from the Hartree–Fock procedure are used to evaluate the matrix
elements of the Hamiltonians Ĥð1;6Þ and Û ð3;4Þ , described in the main text.

Classical error correction technique. When running the IPEA, the probability of
correctly identifying any individual bit with a single sample (n¼ 1) is reduced from
unity by both theoretical (inexact phase expansion to k bits) and experimental
factors (such as imperfect gates). However, as long as it remains above 0.5, repeated
sampling and a majority vote will reduce the probability of error exponentially with
n, in accordance with the Chernoff bound34. This technique allows for a significant
increase in success probability, at the expense of repeating the experiment a fixed
number of times. We note that this simple classical error correction technique can
only play a small role when it comes to dealing with errors in large-scale
implementations. The numerous errors in very large quantum logic circuits will
make achieving a bit success probability over 0.5 a significant challenge. This will
need to be addressed with quantum error correction techniques17,34.

Count rates. We operate with a low-brightness optical source (spontaneous
parametric downconversion pumping power 50 mW) to reduce the effects of
unwanted multi-photon-pair emissions (which cannot be distinguished by our non-
photon-number-resolving detectors and introduce error into the circuit operation).
This yields about 15 coincident detection events per second at the output of our
optical circuit. Therefore each iteration can be repeated 15 times a second.
Reconfiguring the circuit for different iterations takes approximately seven seconds,
largely due to the finite time required to rotate standard computer-controlled
waveplate mounts. Therefore, obtaining a 20–bit estimation of a phase takes about
three minutes, when using n¼ 31 samples to determine the logical state of each bit
(as was used to achieve the results shown in Fig. 2). Note that approximately 95% of
this time is spent rotating waveplates. In future implementations, this time could be
reduced significantly using integrated photonics, for example, qubit manipulation
using an electro-optically-controlled waveguide Mach–Zehnder interferometer48.
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